B.Sc. Semester-VI GroupA / DSE-4 Organic Synthesis

III. Photochemistry

1. Jablonski Diagram, Allowed and Forbidden Transitions

Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi

Jablonski Diagram, Allowed and Forbidden Transitions

Questions need to be asked during the analysis of photochemical reaction

- 1. What are the products of the photo reaction
- 2. what are the electronic characters of the reactive state
- 3. what are the spin characters of the reactive state
- 4. what intermediates are involved in the reaction
- 5. what orbitals are involved and how do they react
- 6. what are the various chemical and physical processes and what are their rates with which a reaction of interest competes

Dr. Rajeev Ranjan

Relative energies of atomic and molecular orbitals

Relative energies of σ , π and n MOs

Absorption maxima for few molecules and functional groups

Molecule	Transition	λ_{\max} (nm)	E (Kcal/mol)
Iodobutane	n-σ*	224	127.7
Ethylene	ππ*	165	173.3
Ethyne	ππ*	173	165.3
Acetone	ππ*	150	190.7
	n-σ*	188	152.1
	n- π*	279	102.5
Butadiene	π – π *	217	131.8
Acrolein	π—π*	210	136.2
	n- π*	315	90.8
Functional group)		
RCH = CHR		165	173.3
		193	148.2
Alkyne		173	165.3
Ketones		188	152.1
		279	102.5
Aldehydes		290	98.6
Carboxylic acids		<205	<137.5

S₀: Ground state (spin paired, Pauli exclusion principle)

- S₁: Excited singlet state
- **T₁: Excited triplet state (spin inversion)**

T_1 is more stable than S_1 (parallel spin, lesser inter-electronic repulsion)

Dr. Rajeev Ranjan

Dr. Rajeev Ranjan

Jablonski diagram

Instead of relaxation to the ground state with the emission of a photon, in photobleaching the fluorophore may interact with another molecule (i.e. oxygen) to produce irreversible covalent modifications.

Modes of Dissipation of Energy (Jablonski diagram)

F: Fluorescence (spin consevation); ISC: Inter system crossing

P: Phosphorescence (Spin inversion).

Thank You

Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi