M.Sc. Semester-IV Core Course-9 (CC-9) Synthetic Organic Chemistry

II. Pericyclic Reactions 1. Molecular Orbital Symmetry

Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi

II Pericyclic Reactions 20 Hrs

Molecular orbital symmetry, Frontier orbitals of ethylene, 1,3-butadiene, 1, 3, 5-hexatriene, allyl system, Classification of pericyclic reactions. FMO approach, Woodward-Hoffman correlation diagram method and PMO approach for pericyclic reaction under thermal and photochemical conditions.

Electrocyclic reactions: Conrotatary and disrotatary motion, 4n and (4n+2) systems, Cycloaddition reaction: [2+2] and [4+2] cycloaddition reaction, Cycloaddition of ketones, Secondary effects in [4+2] cycloaddition. Stereochemical effects on rate of cycloaddition reaction, Diels-Alder reaction, 1,3-dipolar cycloaddition, Chelotropic reaction, The Nazarov reaction.

Sigmotropic rearrangement: Suprafacial and antarafacial shift involving H and carbon-moieties, Peripatetic cyclopropane bridge, Retention and inversion of configuration, [3,3]-, [1,5]-, [2,3]-, [4,5]-, [5,5]-, and [9,9]-Sigmatropic rearrangements, Claisen rearrangements (including Aza-Claisen, Ireland-Claisen), Cope rearrangements (including Oxy-Cope, Aza-Cope), Sommelet-Hauser rearrangements, Group transfer reaction, Ene reaction, Mislow - Evans rearrangement, Walk rearrangement.

Coverage:

- 1. Molecular Orbital Symmetry
- 2. Frontier Orbitals of Ethylene, 1,3-Butadiene, 1, 3, 5-Hexatriene and Allyl System

π-Molecular Orbitals of1,3-Butadiene from Ethylene

 $\underline{m} \rightarrow Symmetry under mirror plane$

π -Molecular Orbitals of 1, 3-Butadiene

π -Molecular Orbitals of 1, 3, 5-Hexatriene

Butadiene: Orbital Coefficients

The Allylic System: Allyl Cation

The Allylic System: Allyl Radical

 $\underline{m} \rightarrow Symmetry under mirror plane$

Dr. Rajeev Ranjan

The Allylic System: Allyl Anion

 $\underline{m} \rightarrow Symmetry under mirror plane$

Energy Gap Between HOMO and LUMO

Thank You

Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi