M.Sc. Semester-IV Core Course-9 (CC-9) Synthetic Organic Chemistry

III. Photochemistry

2. Absorption and Luminescence Processes, Energy Transfer Through Photosensitization

Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi

III Photochemistry 10 Hrs

Thermal versus photochemical reactions, Electronic excitations: $n-\pi^*$ and $\pi-\pi^*$ transitions. Singlet and Triplet energy states: Comparison of energies, Lifetimes and Reactivity. Jablonski diagram, Allowed and forbidden transitions: Fluorescence, Phosphorescence and Internal conversion and Intersystem crossing.

Photochemical reactions of saturated ketones : Norrish Type I and Norrish Type II reaction, Photoreduction of ketone, Photoaddition reactions, Paterno Buchi reaction. Photochemistry of simple olefins : Cis-trans isomerization, Di-pi methane rearrangement. Photooxidation : Formation of peroxy compounds, oxidative couplings : Barton reaction. Photo rearrangements : Photo-Fries rearrangement and Photo rearrangement of 2,5-Cyclohexadienones.

Coverage:

- 1. Absorption and Luminescence Processes
- 2. State Diagram
- 3. Jablonski Diagram for Naphthalene
- 4. Energy Transfer Through Photosensitization
- 5. Sensitizer, Criteria of an Ideal Sensitizer

Dr. Rajeev Ranjan

lowest triplet state is $\pi - \pi^*$

Dr. Rajeev Ranjan

Jablonski Diagram for Naphthalene

Figure 1.13 A Jablooski diagram for naphthalene, showing selected rate constants.

1 kcal = 4.18 kJ

Energy transfer through photosensitization

7

Dr. Rajeev Ranjan

Energy Transfer

Most common mechanism of Energy Transfer is triplet-triplet; mechanism involves a collision, electron exchange.

Dr. Rajeev Ranjan

Some Sensitizers

8.

O

 $_{\mathcal{F}}\mathsf{N}^*(\mathsf{CH}_3)_{\mathbb{R}}$

 CH_3

VI.

 H_3C

M

ь

 CH_3

Ĥ

N

 $(CH_{3})_{2}N$.

 H_3C

Fτ

Rose Bengal

-OBu

OBu

ÒBu

BUO

OBU

ÓBu

BuO

н

Ph

Acridine

Ph

Tetraphenylporphine

A Protoporphyrin

Ρŕ

A Phthalocyanine

-OBu

Some Biological Sensitizers

or Terthienyl - a photodynamic insecticide from marigolds

Cercosporin - a photodynamic mold toxin

Hypericin - photodynamic principle from St. John's wort - livestock damage. Under investigation for antitumor, antiHIV activity

Criteria of an ideal sensitizer

- It must be excited by the irradiation to be used, small singlet triplet splitting. High ISC yield.
- It must be present in sufficient concentration to absorb more strongly than the other reactants under the condition.
- It must be able to transfer energy to the desired reactant, low chemical reactivity in Triplet state.

Thank You

Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi