B.Sc. Semester-VI GroupA / DSE-4 Organic Synthesis

II. Pericyclic Reactions7. 1,3-Dipolar Cycloaddition Reaction

Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi

1,3-Dipolar Cycloaddition Reactions

The cycloaddition of nitrones to alkenes (below) is a 6-electron process which proceeds in a suprafacial manner. The cycloaddition product can be reductively opened, thus providing a stereoselective method for the synthesis of 1,3-aminoalcohols.

A similar cycloaddition of nitrile oxides provides a method for the synthesis of 3-hydroxy ketones, all these reactions involve 4n+2 electrons and are suprafacial:

1,3- Dipolar Compounds:

$$: \stackrel{\cdot}{N} = \stackrel{\cdot}{N} - \stackrel{\cdot}{C}R_2 \longrightarrow : \stackrel{\cdot}{N} = \stackrel{\cdot}{N} - \stackrel{\cdot}{C}R_2 \qquad Diazoalkane$$

$$: \stackrel{\cdot}{N} = \stackrel{\cdot}{N} - \stackrel{\cdot}{N}R \longrightarrow : \stackrel{\cdot}{N} = \stackrel{\cdot}{N} - \stackrel{\cdot}{N}R \qquad Azide$$

$$R\stackrel{\cdot}{C} = \stackrel{\cdot}{N} - \stackrel{\cdot}{C}R_2 \longrightarrow RC = \stackrel{\cdot}{N} - \stackrel{\cdot}{C}R_2 \qquad Nitrile ylide$$

$$R\stackrel{\cdot}{C} = \stackrel{\cdot}{N} - \stackrel{\cdot}{N}R \longrightarrow RC = \stackrel{\cdot}{N} - \stackrel{\cdot}{N}R \qquad Nitrile imine$$

$$R\stackrel{\cdot}{C} = \stackrel{\cdot}{N} - \stackrel{\cdot}{O}: \longrightarrow RC = \stackrel{\cdot}{N} - \stackrel{\cdot}{O}: \qquad Nitrile oxide$$

$$R_2\stackrel{\cdot}{C} - \stackrel{\cdot}{N} - \stackrel{\cdot}{C}R_2 \longrightarrow R_2C = \stackrel{\cdot}{N} - \stackrel{\cdot}{C}R_2 \qquad Azomethine ylide$$

$$R_2\stackrel{\cdot}{C} - \stackrel{\cdot}{N} - \stackrel{\cdot}{O}: \longrightarrow R_2C = \stackrel{\cdot}{N} - \stackrel{\cdot}{O}: \qquad Nitrone$$

$$R_2\stackrel{\cdot}{C} - \stackrel{\cdot}{O} - \stackrel{\cdot}{O}: \longrightarrow R_2C = \stackrel{\cdot}{O} - \stackrel{\cdot}{O}: \qquad Carbonyl oxide$$

1,3-Dipolar Cycloaddition Reaction (Intermolecular)

A. Intermolecular cycloaddition

$$O_2N$$
 $N=\tilde{N}=\tilde{N}+$
 $N=\tilde{N}$
 $N=\tilde{N}$

$$CH_2N_2 + H_2C = CH \longrightarrow O \longrightarrow N$$

PhCH=
$$\stackrel{\uparrow}{N}$$
CH₃ + H₂C=CHC=N $\stackrel{CH_3}{\longrightarrow}$ $\stackrel{CH_3}{\longrightarrow}$ $\stackrel{CH_3}{\longrightarrow}$ $\stackrel{O}{\longrightarrow}$ \stackrel

 $R = -(CH_2)_6CO_2(CH_2)_3CH_3$

1,3-Dipolar Cycloaddition Reaction (Intramolecular)

B. Intramolecular cycloaddition

7g (CH₃)₂C=CHCH₂CH₂CHCH₂CH=O
$$\frac{\text{CH}_{3}\text{NHOH-HCl}}{\text{NaOCH}_{3} \text{ toluene.}}$$
 O CH₃ CH₃ 64-67% CH₃

8h O-
N CH₂CH=CH₂ toluene
$$\Delta$$
 N O
 Δ 1) H₂, Pd/C
 Δ CH₃N OH

5

Thank You

Dr. Rajeev Ranjan

University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi