B.Sc. Semester-VI Paper CC-XIV Organic Chemistry-V

III. Nuclear Magnetic Resonance Spectroscopy

Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi

Nuclear Magnetic Resonance Spectrometer

Theory of NMR Spectrometry Orientation of nuclei in a magnetic field

Random orientation

In presence of a magnetic field Magnetic moments precess and Orient with or against the field

Precession

Directional Quantization

- If a nucleus with angular momentum \mathbf{P} and Magnetic Moment $\boldsymbol{\mu}$
- is place in a magnetic field \mathbf{B}_0 ,
- The angular momentum takes an orientation along \mathbf{B}_0 such that it is an **integral** or **half integral** of **h** (**Plank constant**)

m is the magnetic or directional quantum number it can take values:

$$m = I, I-1, ..., -I$$

$$\begin{array}{c}
 B_{0} \\
 P_{z} = +\frac{1}{2} h \\
 P_{z} = -\frac{1}{2} h \\
 \beta \quad m = -\frac{1}{2}
 \end{array}$$

There are then 2I + 1 orientations in the field

Directional Quantization

The Magnetic Moment $\mu = \mathbf{m} \gamma \mathbf{h}$ precess around the z-axis (magnetic field **B**₀)

 $v_L = \gamma B_0/2\pi$

The **Energy** of a magnetic dipole in the magnetic field \mathbf{B}_0 is:

$$\mathbf{E} = - \mu \mathbf{B}_0$$
 Where $\mu = \mathbf{m} \gamma \mathbf{h}$

For a nuclei with (2I+1) orientations the energy of the individual states (Zeeman levels) is:

$$\mathbf{E} = -\mathbf{m} \, \mathbf{\gamma} \, \mathbf{h} \, \mathbf{B}_0$$

Energy Level and Resonant Transitions

For spin $\mathbf{I} = \frac{1}{2}$ the energy gap between the 2 levels is: $\Delta \mathbf{E} = \gamma \hbar \mathbf{B}_0 = \hbar \nu$ $\mathbf{v} = \gamma \mathbf{B}_0 / 2\pi$

For spin I = 1

Field dependance of a spectra

ELEMENT	# Protons	# Neutrons	I (Spin Quantum Number)
$^{1}\mathrm{H}$	1	0	1/2
2 H	1	1	1
³ H	1	2	1/2
⁴ He	2	2	0
³ He	2	1	1/2
⁶ Li	3	3	1
⁷ Li	3	4	3/2
10 B	5	5	3
11 B	5	6	3/2
^{12}C	6	6	0
¹³ C	6	7	1/2
14 N	7	7	1
¹⁵ N	7	8	1/2

Spin Quantum Number

Even mass:

protons & # Neutrons Both Even : I=0 (⁴He, ¹²C ...)
Protons & # Neutrons Both Odd : I=1, 2, (Integer)

Odd mass: # protons odd & # Neutrons Even : I=1/2, 3/2, ... (Half-integer) # protons even & # Neutrons odd : I=1/2, 3/2, ... (Half-integer)

Important Elements in NMR Spectrometry

There are 4 important elements in Org. Chemistry: (frequency at 2.35T)

- H : Best NMR element
 - $^{1}\mathbf{H}$, I = $^{1}\!\!/_{2}$ (sharp lines), a = 99.98% , high frequency (v = 100 MHz)
 - $^{2}\mathbf{H}$, I =1 (broad lines), a = 0.02%, v = 15.4 MHz, Q=0.038
- C :
 - ${}^{12}C$, I = 0 (no signal in NMR)
 - ^{13}C , I = $^{1}\!\!/_{2}$ (sharp lines), a = 1.1% , v = 25.3 MHz
- N :
 - ${}^{14}N$, I =1 (broad lines), a = 99.6%, v = 7.2 MHz, Q=1.0
 - ¹⁵N, I = ¹/₂ (sharp lines), a = 0.4%, v = 10.1 MHz
- 0:
 - ${}^{16}O$, I = 0 (no signal in NMR)
 - ^{17}O , I =5/2 (broad lines), a = 0.04%, v = 13.5 MHz, Q=-0.037

Important Elements in NMR Spectrometry

- •N :
 - $-^{14}$ N, I =1 (broad lines), a = 99.6%, v = 7.2 MHz Q=1.0

 $- \frac{15}{N}$, I = $\frac{1}{2}$ (sharp lines), a = 0.4%, v = 10.1 MHz Q=0

Although N-14 has large natural abundance, the presence of quadrupole moment and very low frequency make it impractical for NMR studies. The presence of quadrupole moment in that abundant element **alter the shape of nearby protons and carbons**

N-15 is a better candidate but the low abundance & low frequency render it's observation extremely difficult.

Important Elements in NMR Spectrometry

- Halogens: ¹⁹F, Cl, Br, I
- ³¹P, S
- **B**, ²⁹Si
- Na
- Co, Cd, **W**, **Pt**, **Hg...**

Relaxation Effects

- T_1 : Spin-Lattice Relaxation: reestablish population equilibrium along Z Convert Spin Energy to thermal energy => spin transition from upper to lower state
- **T**₂ : Spin-Spin Relaxation: Dephase nuclear dipole in the XY plane
- There are 5 mechanism for T_1 Relaxation
 - Dipole-Dipole : most important => intramolecular interaction between nearby nuclei. Depends on intensity of magnetic moment and on distance between nuclei
 - 2. Spin-Rotation
 - 3. Anisotropy
 - 4. Scalar coupling
 - 5. Quadrupolar Relaxation (very large)

Chemical Shift in NMR

Since it is not easy to report and measure **Absolute Frequency**, **Relative scale referencing** is usually adopted in NMR

Chemical shift in NMR

1. Chemical shift (δ) \rightarrow ppm Structural information

$$v_{PEAK} - v_{REF}$$
 (Hz)
 δ (ppm) = ------ = ppm
Freq of the nuclei (MHz)

e.g. at 200 MHz:

If **R-CH(OR)**₂ appear at **1,000 Hz** from **TMS (0)** It's chemical shift is:

 $\delta=1,000~Hz/200~MHz=5~ppm$

d is dimensionless (independent from the applied field) n changes with the applied field

¹H NMR : $C_4H_8O_3$

Thank You

Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi