B.Sc. Semester-VI
 Paper CC-XIV
 Organic Chemistry-V

III. Nuclear Magnetic Resonance Spectroscopy

Dr. Rajeev Ranjan
University Department of Chemistry
Dr. Shyama Prasad Mukherjee University, Ranchi

Nuclear Magnetic Resonance Spectroscopy

${ }^{1}$ H NMR-Spin-Spin Splitting

- Consider the spectrum below:

Ethyl Bromide

Spin-Spin Splitting in ${ }^{1} \mathbf{H}$ NMR Spectra

- Peaks are often split into multiple peaks due to magnetic interactions between nonequivalent protons on adjacent carbons, The process is called spin-spin splitting
- The splitting is into one more peak than the number of H's on the adjacent carbon(s), This is the " $\mathrm{n}+1$ rule"
- The relative intensities are in proportion of a binomial distribution given by Pascal's Triangle
- The set of peaks is a multiplet $(2=\operatorname{doublet}, 3=$ triplet, $4=$ quartet, $5=$ pentet, $6=$ hextet, $7=$ heptet.....)

Rules for Spin-Spin Splitting

- Equivalent protons do not split each other

Three C-H protons are chemically equivalent; no splitting occurs.

Four C-H protons are chemically equivalent; no splitting occurs.

- Protons that are farther than two carbon atoms apart do not split each other

Splitting observed

Splitting not usually observed

${ }^{1}$ H NMR-Spin-Spin Splitting

If H_{a} and H_{b} are not equivalent, splitting is observed when:

H_{a} and H_{b} are on the same carbon.

H_{a} and H_{b} are on adjacent carbons.

Splitting is not generally observed between protons separated by more than three σ bonds.

no splitting between H_{a} and H_{b}

ethyl methyl ether
H_{a} and H_{b} are separated by four σ bonds.
no splitting between H_{a} and H_{b}

The Origin of ${ }^{1} \mathbf{H}$ NMR-Spin-Spin Splitting

- Spin-spin splitting occurs only between nonequivalent protons on the same carbon or adjacent carbons.

Let us consider how the doublet due to the CH_{2} group on $\mathrm{BrCH}_{2} \mathrm{CHBr}_{2}$ occurs:

- When placed in an applied field, $\left(\mathbf{B}_{0}\right)$, the adjacent proton $\left(\mathrm{CHBr}_{2}\right)$ can be aligned with (\uparrow) or against $(\downarrow) \mathbf{B}_{0}$. The likelihood of either case is about 50% (i.e., $1,000,006 \uparrow$ vs $1,000,000 \downarrow$).
- Thus, the absorbing CH_{2} protons feel two slightly different magnetic fieldsone slightly larger than \mathbf{B}_{0}, and one slightly smaller than \mathbf{B}_{0}.
- Since the absorbing protons feel two different magnetic fields, they absorb at two different frequencies in the NMR spectrum, thus splitting a single absorption into a doublet, where the two peaks of the doublet have equal intensity.

The Origin of ${ }^{1} \mathbf{H}$ NMR-Spin-Spin Splitting

The frequency difference, measured in Hz , between two peaks of the doublet is called the coupling constant, J.

- One adjacent proton splits an NMR signal into a doublet.

The Origin of ${ }^{1} \mathbf{H}$ NMR-Spin-Spin Splitting

Let us now consider how a triplet arises:

- When placed in an applied magnetic field $\left(\mathbf{B}_{0}\right)$, the adjacent protons H_{a} and H_{b} can each be aligned with (\uparrow) or against $(\downarrow) \mathrm{B}_{0}$.
- Thus, the absorbing proton feels three slightly different magnetic fieldsone slightly larger than $\mathrm{B}_{0}\left(\uparrow_{a} \uparrow_{\mathrm{b}}\right)$. one slightly smaller than $\mathrm{B}_{0}\left(\downarrow_{\mathrm{a}} \downarrow_{\mathrm{b}}\right)$ and one the same strength as $\mathbf{B}_{0}\left(\uparrow_{a} \downarrow_{b}\right)$.

The Origin of ${ }^{1} \mathbf{H}$ NMR-Spin-Spin Splitting

- Because the absorbing proton feels three different magnetic fields, it absorbs at three different frequencies in the NMR spectrum, thus splitting a single absorption into a triplet.
- Because there are two different ways to align one proton with B_{0}, and one proton against B_{0}-that is, $\uparrow_{\mathrm{a}} \downarrow_{\mathrm{b}}$ and $\downarrow_{\mathrm{a}} \uparrow_{\mathrm{b}}$-the middle peak of the triplet is twice as intense as the two outer peaks, making the ratio of the areas under the three peaks 1:2:1.
- Two adjacent protons split an NMR signal into a triplet.
- When two protons split each other, they are said to be coupled.
- The spacing between peaks in a split NMR signal, measured by the J value, is equal for coupled protons.

The Origin of ${ }^{1} \mathrm{H}$ NMR-Spin-Spin Splitting

How a triplet arises

The Origin of ${ }^{1} \mathbf{H}$ NMR-Spin-Spin Splitting

One H_{b} atom

Two equivalent H_{b} atoms

Three equivalent
H_{b} atoms

Observed splitting in signal of H_{a}

Common Splitting Patterns observed in ${ }^{1} \mathbf{H}$ NMR

"The relative area under the peaks of a quartet is $1: 3: 3: 1$.

Nuclear Magnetic Resonance Spectroscopy

${ }^{1}$ H NMR-Spin-Spin Splitting

Whenever two (or three) different sets of adjacent protons are equivalent to each other, use the $n+1$ rule to determine the splitting pattern.

Nuclear Magnetic Resonance Spectroscopy

${ }^{1}$ H NMR-Spin-Spin Splitting

Whenever two (or three) different sets of adjacent protons are equivalent to each other, use the $n+1$ rule to determine the splitting pattern.

Nuclear Magnetic Resonance Spectroscopy

${ }^{1}$ H NMR-Spin-Spin Splitting

Whenever two (or three) different sets of adjacent protons are not equivalent to each other, use the $n+1$ rule to determine the splitting pattern only if the coupling constants (J) are identical:

Free rotation around $C-C$ bonds averages
coupling constant to $\mathrm{J}=7 \mathrm{~Hz}$

Nuclear Magnetic Resonance Spectroscopy

${ }^{1}$ H NMR-Spin-Spin Splitting

Whenever two (or three) different sets of adjacent protons are not equivalent to each other, use the $\mathrm{n}+1$ rule to determine the splitting pattern only if the coupling constants (J) are identical:

Thank You

Dr. Rajeev Ranjan
University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi

