B.Sc. Semester-VI Paper CC-XIV Organic Chemistry-V

III. Nuclear Magnetic Resonance Spectroscopy

Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi

Nuclear Magnetic Resonance Spectroscopy ¹H NMR–Position of Signals

- In the vicinity of the nucleus, the magnetic field generated by the circulating electron decreases the external magnetic field that the proton "feels".
- Since the electron experiences a lower magnetic field strength, it needs a lower frequency to achieve resonance. Lower frequency is to the right in an NMR spectrum, toward a lower chemical shift, so shielding shifts the absorption upfield.

¹H NMR–Position of Signals

- The less shielded the nucleus becomes, the more of the applied magnetic field (B₀) it feels.
- This deshielded nucleus experiences a higher magnetic field strength, to it needs a higher frequency to achieve resonance.
- Higher frequency is to the left in an NMR spectrum, toward higher chemical shift—so deshielding shifts an absorption downfield.
- Protons near electronegative atoms are deshielded, so they absorb downfield.

¹H NMR–Position of Signals

a. Shielding effects

- · An electron shields the nucleus.
- The absorption shifts upfield.

Increasing chemical shift

Increasing v

b. Deshielding effects

- · Decreased electron density deshields a nucleus.
- · The absorption shifts downfield.

Increasing chemical shift Increasing v

¹H NMR–Position of Signals

- As the electron density around the nucleus increases, the nucleus feels a smaller resultant magnetic field, so a lower frequency is needed to achieve resonance.
- The absorption shifts upfield.

- As the electron density around the nucleus decreases, the nucleus feels a larger resultant magnetic field, so a higher frequency is needed to achieve resonance.
- The absorption shifts downfield.

¹H NMR–Position of Signals

 $\begin{array}{c} \mathsf{CH}_{3}\mathsf{CH}_{2}\mathsf{CI}\\ \mathsf{H}_{a} \quad \mathsf{H}_{b}\\ \mathsf{Br}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{F}\\ \mathsf{H}_{a} \quad \mathsf{H}_{b}\\ \mathsf{CICH}_{2}\mathsf{CH}\mathsf{CI}_{2}\\ \mathsf{H}_{a} \quad \mathsf{H}_{b}\\ \end{array}$

- The H_b protons are **deshielded** because they are closer to the electronegative Cl atom, so they absorb **downfield** from H_a.
- Because F is more electronegative than Br, the H_b protons are more **deshielded** than the H_a protons and absorb farther **downfield**.
- The larger number of electronegative Cl atoms (two versus one) **deshields** H_b more than H_a , so it absorbs **downfield** from H_a .

¹H NMR–Chemical Shift Values

• Protons in a given environment absorb in a predictable region in an NMR spectrum.

Type of proton	Chemical shift (ppm)	Type of proton	Chemical shift (ppm)
−C−H sp ³	0.9–2	C=C sp ²	4.5–6
 RCH₃ R₂CH₂ R₃CH 	~0.9 ~1.3 ~1.7		6.5–8
Z C-C-H Z = C, O, N	1.5–2.5	R H	9–10
—C≡C−H	~2.5	R OH	10–12
$sp^{3} \stackrel{ }{Z} = N, O, X$	2.5–4	RO-H or R-N-F	1–5

¹H NMR–Chemical Shift Values

• The chemical shift of a C-H bond increases with increasing alkyl substitution.

Calculating¹H NMR–Chemical Shift Values

- Tchemical shift of a C—H can be calculated with a high degree precision he if a chemical shift additivity table is used.
- The additivity tables starts with a base chemical shift value depending on the structural type of hydrogen under consideration:

Calculating¹H NMR–Chemical Shift Values

- The presence of nearby atoms or groups will effect the base chemical shift by a specific amount:
 - The carbon atom bonded to the hydrogen(s) under consideration are described as alpha (α) carbons.
 - Atoms or groups bonded to the same carbon as the hydrogen(s) under consideration are described as alpha (α) substituents.
 - Atoms or groups on carbons one bond removed from the a carbon are called beta (β) carbons.
 - Atoms or groups bonded to the β carbon are described as alpha (α) substituents.

Calculating¹H NMR–Chemical Shift Values

Ail of Clemical Shills				βα
Salactitaent	Type of Hydrogen	a-SLR	p⊢ Sha t	
C=C-	CH3 CH2	0.78 0.75		
	CH	_	_	CI-C-C-II (Hydrogen under consideration)
Y RC-C=C				H H Base Chemical Shift = 0.87 ppm
[Y = C or O]		1.00		no α substituents = 0.00
Ard.	CHS	1.40	095	
	(117)	145	0.59	one β -Cl (CH _a) = 0.63
	CH	198	_	
CL	CHg	2.49	Q.63	TOTAL = 1.50 ppm
	CH2	2.90	0.59	
	CH	2.55	0.05	
Br-	CHS	1.80	0.89	αβ
	CH ₂	2.18	0.60	
	CH	2.68	0.25	
I-	CHS	1.28	1.29	
	CH2	198	0.58	
orr	CH CH	275	0.00	CI+C+-CH (Hydrogen under consideration)
UII-	CH3	2.30	019	
		2.00	u13	H Base Chemical Shift - 1 20 ppm
RO- (R in retrated)	CHI 4	2.49	0 99	Duse chemical Shift = 1.20 ppm
	CHT2	295	015	one $\alpha = CL(CH_{2}) = 2.30$
	CH	2.00		010 a - 01 (012) - 2.00
O				no β substituents = 0.00
R-CO- or ArO-	(9F.	2.00	0.98	TOTAL = 350 ppm
	CH5	298	0.45	
	(TH)	9.49		
		(eterody)		
0 R-C-	CH3	1.29	Q.1 2	11
where IL is alkyl, aryl, OH,	CH ₂	1.05	0.91	
OR, H, CO, er N	CH	1.05	— —	

Thank You

Dr. Rajeev Ranjan

University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi