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Abstract The research on host-pathogen interactions is an ever emerging and evolving field. Every other day1

a new pathogen gets discovered, along with comes the challenge of its prevention and cure. As the intelligent2

human always vies for prevention which is better than cure, understanding the mechanisms of host-pathogen3

interactions gets prior importance. There are a whole lot of mechanisms involved from the pathogen as well4

as the host sides while an interaction happens. It is a vis-a-vis fight of the counter genes and proteins from5

both the sides. Who wins on that depends whether a host gets an infection or not. Moreover, higher level6

of complexity arises when the pathogens evolve and become resistant to a host’s defense mechanisms. Such7

pathogens pose serious challenges for treatment. The whole human population is in danger of such long-8

lasting persistent infections. Some of these infections even increase the rate of mortality. Hence there is an9

immediate emergency to understand how the pathogens interact with their host for successful invasion. It may10

lead to discovery of appropriate preventive measures, and the development of rational therapeutic measures11

and medication against such infections and diseases. This review, a state-of-the-art updated scenario of host-12

pathogen interaction research, has been done by keeping in mind this urgency. It covers the biological and13

computational aspects of host-pathogen interactions, classification of the methods by which the pathogens14

interact with their hosts, different machine learning techniques for prediction of host-pathogen interactions15

and future scopes of this research field.16

Keywords Host-Pathogen Interactions · Pathogen Informatics · Machine Learning · In silico Prediction ·17

Secretion Systems · Effector Proteins18

1 Introduction19

The term ‘host-pathogen interaction’ refers to the ways in which a pathogen (virus, bacteria, prion, fungus20

and viroid) interacts with its host. Pathogens adapt to the changes, and find alternative ways to survive and21

infect a host. They are infectious agents which cause diseases in a host body, when the host immune system22

fails against them. Questions like how the pathogens function, how their entry point into the host is facilitated23

through the biological barriers and how they survive inside a host that is often under treatment or immunized24

for the same pathogen, can be answered by exploring host-pathogen interactions. Host-pathogen interactions25

can be described on the population level (virus infections in a human population), on the organismal level26
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(pathogens infecting host), or on the molecular level (pathogen protein binding to a receptor on human cell).27

However, before stepping into methodological details of host-pathogen interaction processes, a brief glimpse28

into history of this research field is included here to sum up the how(s) and why(s) of recent advancements29

of this field.30

31

Some of the earliest research works in the domain of host-pathogen interactions are i) study of host-pathogen32

interaction in mouse typhoid caused by Salmonella typhimurium [146], ii) genetic study of physiology of par-33

asitism of the corn rust pathogen Puccinia sorghi [31], iii) a correlation study of α-galactosidase production34

and host-pathogen interaction between Phaseolus vulgaris and Colletotrichum lindemuthianurn [42], iv) study35

of ultrastructural aspects of a host-pathogen relationship of a deuteromycetes fungus, Pyrenochaeta terrestris36

with 2 Allium cepa (onion) varieties with the help of electron microscopy [56], v) fine structure study of37

principal infection procedure during infection of Barley by Erysiphe graminis [40], vi) a study on proteins38

which obstructs the action of the polygalacturonases (polygalaicturonide hydrolases, EC 3.2.1.15) released39

by the fungal plant pathogens Fusarium oxysporum, Colletotrichum lindemuthianum, and Sclerotium rolfsii.40

These proteins are extracted from the cell walls of Red Kidney bean hypocotyls, tomato stems and suspension-41

cultured sycamore cells [1],vii) a study on proteins secreted by plant pathogens which impedes enzymes of the42

host having the ability to attack the pathogen. The study is conducted on a interaction system of a fungal43

pathogen (Colletotrichum lindemuthianum) and its host, the French bean (Phaseolus vulgaris) [2], viii) a44

study on a single plant protein that efficiently hinders endopolygalacturonases secreted by Aspergillus niger45

and Colletotrichum lindemuthianum [46], ix) a molecular basis study to showcase mutation of Xanthomonas46

campestris to overcome resistance in pepper (Capsicum annuum) [59], x) a study on stress and immunological47

response in host-pathogen interactions [90].48

49

Some recent research works have focused on i) the basic notion of virulence and pathogenicity which de-50

fines and suggests a classification system for microbial pathogens based on their capacity to cause damage51

as a consequence of the host’s immune response [17], ii) model organisms for host-pathogen interactions,52

i.e., C. elegans [70], D. melanogaster [91, 135] and zebrafish [53, 129] among others, iii) molecular cross-talk53

of host-pathogen interactions where Type III secretion system is mentioned [108], iv) novel studies involving54

epigenetics1 [49], metallobiology [11], quantitative temporal viromics2 [138], heterogeneity in same host tis-55

sue [14], and computational systems biology [36] of host-pathogen interactions.56

57

All these investigations indirectly show us the trend of development of the host-pathogen interactions re-58

search field. The field has started with sporadic research works of a pathogen and its interaction with a host.59

The earliest research has been done on host-pathogen interactions with respect to environmental factors,60

like light, temperature, season, and pathogen/host population among others. Later some organisms, like C.61

elegans and D. melanogaster have been found as model organisms to study the pathogen behavior of other62

complex hosts (human beings) due to their easy body plan, known genome structure and short life cycle.63

Gradually, certain proteins and then protein clusters have been marked for taking part in host-pathogen inter-64

actions. Moreover, definite classification has been found for the mechanism of host-pathogen interactions at65

the advent of recent developments in imaging and molecular biology techniques.66

67

Moreover, some research works have defined and gave direction to the host-pathogen interactions research68

field. Discovery of distinct secretion systems [30, 47, 68, 100, 101, 139] has provided the basic background69

of host-pathogen interaction research. The concerned studies have spanned from genome locus [68] to bio-70

chemical and genetic evidence [88]. With discovery of PPI prediction methods [10], the chance of finding71

host-pathogen protein pairs and their interactions has become more prominent and such studies have given72

a different direction to the research field. Then methods have been developed for the machine learning based73

in silico prediction of secretion system associated proteins [4]. There are also a couple of newly proposed74

methods [54,84] which provide new glimmer of hope to the research field in controlling pathogenesis in a host75

as described below.76

77

– Secretion systems Type I [139], Type II [30], Type III [47] and Type V [100] have been discovered in 1980s,78

which have defined the base for host-pathogen interaction research.79

– Kuldau et al. [68] have predicted 11 ORFs from virB locus in 1990. Based on hydropathy plot they80

have analyzed that nine of them encode proteins which may interact with membranes and may form a81

1 a procedure through which genotypes give rise to phenotypes during development due to changes in underlying DNA
sequence(s), i.e., histone modifications, DNA methylation, DNA silencing via noncoding RNAs and chromatin remodeling proteins.

2 temporal alterations in host and viral proteins throughout the course of a productive infection
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membrane pore or channel to mediate exit of the T-DNA copy. This is the first indirect indication of a82

distinct secretion system, later known as Type IV Secretion system (T4SS).83

– Pukatzki et al. have functionally defined T6SS in 2006 [101].84

– Mougous et al. in 2006 have provided biochemical and genetic evidence that a virulence-associated genetic85

locus of P. aeruginosa, termed as HSI-I, encodes a protein secretion apparatus (T6SS) [88].86

– Machine learning based prediction of PPIs have been done by Bock et al. in 2001 [10]. They have used87

Support Vector Machine (SVM) to train and predict interactions based on primary structure and related88

physicochemical properties. This work has provided a shift in research direction from genes to their protein89

counter parts and their nature of interaction.90

– First ever machine learning based prediction of Type III secretion system associated proteins have been91

done by Arnold et al. in 2009 by analyzing the amino acid composition and secondary structure composition92

of a few experimentally verified effector proteins at N-terminal [4].93

– A few new studies and methods have proposed new avenues of future host-pathogen interaction research,94

i.e., a new way of studying host-pathogen interaction by dendritic cell subtypes [84] and chemoproteomic95

profiling of host and pathogen enzymes for finding candidates (proteases) to disrupt pathogenic mecha-96

nisms which often have boosted the host’s defense mechanisms directly or indirectly [54].97

98

The present review tries encompass the in silico prediction of host-pathogen interactions by machine learning99

and the related aspects. It has been organized into dedicated sections of classification of host-pathogen interac-100

tions, availability of host-pathogen interaction data, prediction of host-pathogen interaction domains, image101

processing based research techniques, and conclusive remarks. There are several substrates and pathways102

whereby pathogens can invade a host. The human body has its own natural defense mechanism against some103

of the common pathogens in the form of an immune system that acts against these pathogens. Pathogens104

have the capability to adhere to host tissues, to evade host defenses, and to invade host cells. However, deeper105

understanding has revealed that each pathogen has their own variation of these themes [107]. Host-pathogen106

interactions take place between a host and a pathogen through the protein(s) and gene(s), and by disrupting107

normal functioning of pathway(s), forming biofilm(s), inhibiting macrophage activity and by other methods. In108

this review, we have briefly discussed about the various probable factors which directly or indirectly contribute109

to host-pathogen interactions. Pathogens can either attack a host in gene level by emitting RNA, or they can110

release proteins which would lead to pathogenicity or they can inhibit the mechanism of macrophage. Some111

pathogens utilize the components of a host system to survive in the host. These components are called host112

factors. In a few cases, some factors of a pathogen can initiate the autophagy mechanism which acts in favor113

of the host. The classification of the host-pathogen interactions is based on traditional pathogen invasion into114

host.115

116

The review starts with categorization (Figure 1) of pathogens, and makes a comprehensive list of diseases117

caused by them. The following section discusses classification of host-pathogen Interactions based on different118

biology based reasoning. Then the widely used in silico prediction methods in the domain of host-pathogen119

interactions are described. Moreover, an extensive list of the online repositories is given. The review concludes120

with a brief discussion that includes the merits and demerits of this research filed in general, a few scopes for121

future research and concluding remarks.122

2 Classification of Host-Pathogen Interactions123

The components of a host-pathogen interaction can be broadly classified into 4 stages, i.e., invasion of host124

through primary barriers, evasion of host defenses by pathogens, pathogen replication in host and a host’s125

immunological capability to control/eliminate the pathogen. A pathogen can invade a host only after breach-126

ing the primary host defenses. Pathogens contain virulence factors which promote and cause disease. The127

greater the virulence, the more likely the disease will occur. We have classified the host pathogen interactions128

according to these stages. A summary of the methods discussed in this review has been diagrammatically129

represented in Figure 2. However, in silico prediction methods used for detection of such interactions have130

been described in the Section 3. The stages mentioned below are overlapping in nature. They do not have a131

clear boundary between them. The in silico prediction methods described later cannot be uniquely associated132

to only one of the stages. Their applicability spans over many or all the stages of host pathogen interactions.133

134

2.1 Invasion of host through breach of primary barriers135

136
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One of the main ways in which pathogens invade the host is via protein secretion. Pathogens, particularly137

the Gram negative bacteria, which cause pathogenesis in host, consist of secretion systems. These secretion138

systems release proteins, called effectors, into the body of the host when they come in contact with the host.139

There are at least six specialized secretion systems in Gram negative bacteria. Type I, Type II, Type III, Type140

IV, Type V and Type VI are the prominent ones based on their mechanisms of host infection. Details of141

these mechanisms can be obtained from Costa et al. [27]. Numerous secreted proteins are crucial in bacte-142

rial pathogenesis. We have described a few of them here, i.e., toxins, urease and multivalent adhesion molecule.143

144

Toxins are substances created by plants and animals that are poisonous to humans. Most toxins that cause145

problems in humans come from germs such as bacteria. Toxins can be small molecules, peptides, or proteins146

that are capable of causing disease on contact with or absorption by body tissues interacting with biological147

macromolecules such as enzymes or cellular receptors. These toxins, once in the body of the host, intervene148

with the normal functioning of the metabolism of host. Minimized toxin expression in a pathogen have a149

lesser effect on the stimulation of host's TCR signaling pathway at the time of attack than that with higher150

toxin expression. It has been observed that viruses interact with different proteins of individual pathways151

temporally [118]. The molecules that are secreted by gram negative pathogens, lead to damage of the host152

cells. The vesicle released from the enclosure of the growing bacteria, serves as containers for the proteins153

and lipids of the Gram negative bacteria. It suggests the importance of vesicle mediated toxin delivery for the154

onset of infection in the host.155

156

Effectors proteins are secreted by pathogenic bacteria for their entry into host. Effector proteins help a157

pathogen for invading host tissue, suppressing the host’s immune system, and often help the pathogen in158

its survival. Effector proteins are crucial for virulence. For example, in Yersinia pestis (the causative agent159

of plague), loss of the T3SS has rendered the bacteria completely avirulent [80]. Naive Bayes classifier and160

support vector machine have already been applied to detect effector proteins of T3SS [4, 136]. More details161

regarding the methodology is given in the Section 3.162

163

Urease (an enzyme) plays an important role in Mtb-host interaction [23]. Urease is present in many species164

of mycobacterium, and its presence/absence is frequently used in the speciation of mycobacteria. Urease has165

been considered to be a virulence factor for several pathogenic microorganisms. Generation of ammonia by166

urease of urinary pathogens, such as P. mirabilis, have contributed to its pathogenesis due to its toxicity167

to renal epithelium, participation in complement inactivation and promotion of urinary stone formation [13].168

Urease of H. pylori alkalinizes the bacterial micro-environment in the stomach and is toxic to stomach epithe-169

lium [120]. In the case of Mtb, urea is readily available to the bacteria in both its intracellular and extracellular170

locations within the host.171

172

Multivalent Adhesion Molecule (MAM) is responsible for establishing high affinity binding to host cells during173

early stages of infection [63]. MAM7 connects to a host via protein-lipid (phosphatidic acid) and protein-protein174

(fibronectin) interactions. MAM7 has been found on the outer membrane of the gram negative pathogens175

which contributes to its virulence.176

177

178

2.2 Evasion of host defenses by pathogens179

180

In order to survive inside the host, the pathogens need to avoid the host defense mechanism. Mycobac-181

terium tuberculosis (Mtb) showcases that it actively transcribes a number of genes involved in fortification182

and evasion from a host system [103]. Assessment of the genome of 58 strains of Staphylococcus aureus183

reveals that all the immune evasive proteins are present in all the strains but not all the surface proteins [81].184

Remarkably, 4 strains have surface and immune evasion genes similar to human strain. On the other hand, the185

putative targets of these proteins vary in different hosts, which propose that these proteins are not crucial for186

virulence. Signaling for anti-inflammation by glycolipids and host system interaction may be considered as a187

method of Mycobacteria to evade the host or may be playing a vital role in preventing extreme inflammatory188

response [131].189

190

Pathogens often affect the essential pathways of their hosts with the aim to evade the host defenses. NF-κB191

family of transcription factors help in the development of the APC (Antigen Presenting Cell) and the lympho-192

cyte [125]. Once the host is compromised, NF-κB pathway gets activated. HIV-1 mostly depends on its host193

for survival as it has a few genes of its own. An integrated study of HIV-1 and human signal transduction194
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pathways have been carried out to infer that most of these pathways may get effected by HIV virus during its195

life cycle [7]. It has assessed and analyzed all possible paths (perturbed and unperturbed) starting from one196

protein (start point) terminating into another (end point).197

198

Human proteins potentially targeted by EBV (Epstein-Barr virus), tend to be hubs in the human interactome.199

It is consistent with the hypothesis that hub protein targeting is an effective mechanism for viruses to convert200

pathways for their use [16]. Bacterial and viral pathogens are more inclined to interact with hub proteins,201

and the proteins that are central to multiple pathways in the network [38]. Certain cellular mechanisms, like202

cell cycle regulation and nuclear transport participate in these interactions with a different set of pathogens.203

A study has identified 3073 human-B. anthracis, 1383 human-F. tularensis and 4059 human-Y. pestis PPIs204

(Protein-Protein-Interactions) [39]. As suggested by Ranet et al. [38], these PPIs have occurred among those205

hub and bottleneck proteins. The extracellular hydrolytic enzymes, especially the aspartyl proteinases (Saps)206

secreted by C. albicans, are major factors of its pathogenicity [92]. Protein Chaperon 60 and 60.1 have a207

higher impact on activation of the cytokines than the protein Chaperon 60.2 [75]. In Staphylococcus aureus,208

proteins EsxA and EsxB act as virulent factors to enforce pathogenesis [15]. Mutants that do not secrete these209

proteins have been observed for failing to enforce strong pathogenesis. Among two closely related families of210

proteins, PE and PE PGRS, PE PGRS of Mtb activates a considerable humoral immune response but not211

PE [29]. Further study suggests that unlike PE, certain PE PGRS genes are expressed during infection and212

antibody response. In case of Enterovirus, 71 genes out of 699 get differentially expressed significantly during213

infection [77]. Lack of the flagella gene in Salmonella typhimurium contributes to its virulence. Addition of214

flagella gene increases the cytotoxicity. However, it does not increase the production of IL-6 (InterLeukin-215

6) [96].216

217

One of the crucial host defenses is the macrophage. Hence macrophage inhibition is another factor using218

which the pathogen evades the host immune mechanism. Macrophage activation happens due to multiple219

components, i.e., gene(s) encoding receptor(s), signal transduction molecule(s), transcription factor(s) and220

bacterial component(s) that activate toll like receptor(s) (lipopolysacharide, muramyl dipeptide, lipoteichoic221

acid and heat shock proteins) [94] among others. Pathogens attempt to survive in the host by preventing the222

macrophages to act on them. It has been found that pathogens disrupt the enzymatic activity in activated223

macrophages by disrupting the actin filament network [50].224

225

It has been identified that falsatin is an endogenous protease inhibitor of Plasmodium falciparum. Analy-226

sis of inhibition of normal functionality of macrophages to engulf pathogens and ingest killed parasites due to227

the functioning of ornithine decarboxylase, has been done by Nairz et al. [60]. Due to pathogen specific re-228

sponses, interleuken-12 production is inhibited for Mtb, hence allowing the host to fight against the pathogen.229

It has been found that 26 to 37 proteins of HIV-1 are associated with MDM (monocyte derived macrophages)230

derived from HIV [22]. Inhibition by Mtb can be avoided with the help of IFN-γ and transfection of LRG-231

47 [52]. It has been found that Mtb residing in macrophage, switches to anaerobic growth [114] to evade host232

defense for a longer period of time.233

234

The crosstalk of host-pathogen interactions is often governed by miRNAs [48, 111, 112]. The small RNAs,235

like siRNAs and shRNAs also play a vital role in host-pathogen interactions. Konig et al. [62] have studied236

the association of siRNAs with host-pathogen interactions. They have explored it by combining genome wide237

siRNA analysis along with the knowledge from human interactome database. Pathogens have Short Linear238

Motifs (SLiM) that have high similarity with host SLiMs. Motif mimicry is used by pathogens to rewire host239

signaling pathways by co-opting SLiM-mediated protein interactions to affect the host systems [133].240

241

Pneumolysin (an enzyme) is a key virulence factor [78]. It activates multiple genes and signal transduc-242

tion pathways in eukaryotes. Cytolytic effect of Pneumolysin contributes to lung injury and neural damage.243

It sometimes induces apoptosis in neurons and other cells. It can also trigger host mediated apoptosis in244

macrophages, thus magnifying extermination of pathogens. Pneumolysin has a both way balancing effect on245

the host.246

247

248

2.3 Pathogen replication in host249

250

For surviving inside a host, pathogens have multiple ways to facilitate their growth by speedy replication.251

First of all, they need a few genes and proteins to survive effectively in the host, while a lot more genes and252
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proteins are required for their survival outside the host. A study on the metabolic network of the pathogen,253

Salmonella typhimurium, has revealed 1083 genes catalyzing 1087 metabolic and transport reactions. This254

suggests that a minimal set of potent metabolic pathways within Salmonella typhimurium, is required for its255

favorable replication of Salmonella typhimurium within the host [104]. Erythrocytic malaria parasite needs256

proteases for a number of its cellular processes [98] in order to survive in the host.257

258

Pathogens have evolved strategies to promote their survival by performing hijacking of the host cells they259

infect. Viruses implant their DNA sequence into the normal sequence of these hosts in the hope of their better260

survival [105] inside the hosts. A genome of the strain of Mtb, H37Rv, made up of 4000 genes comprising261

4,411,529 base pairs, have a high guanine and cytosine content [24]. In this genome, 194 genes are required262

for the growth of Mtb [110]. A large number of these genes is unique to mycobacteria and its closely related263

species. It leads to the fact that the mechanism of infection of Mtb is different from other pathogenic species.264

265

Some pathogens even respond to more than one micro-environment for their replication and survival. The266

genes responsible for Snm (secretion in mycobacterium) protein secretion in a mutation of Mtb, which is My-267

cobacterium smegmatis, are homologs of their Mtb counterpart [26]. It suggests that some strains may have268

similar secretion mechanism. Four essential gene products (Sm3866, Sm3869, Sm3882c, and Sm3883c) are269

needed for Snm secretion. Mtb exists in various metabolic states. This fact indicates that it may be responsive270

to more than one micro-environment [45].271

272

The genome of Mycobacterium tuberculosis possesses a large family of Ser/Thr protein kinases (STPKs).273

STPKs have been found to play an important role in cell division and cell envelope biosynthesis [87]. The outer274

membrane of the bacteria facilitates the interaction between a host and a pathogen [67]. C. albicans have275

the capability to colonize and infect majority of the tissues of human host, which indicates that it can have276

functionally distinct proteinases (enzymes performing proteolysis) so as to have enough flexibility to multiply277

and survive in the host.278

279

Sometimes a host itself unknowingly facilitates/inhibits the survival of its pathogens. These facilities are280

referred to as the host factors. These factors help in pathogen replication, transcription, integration, growth,281

198 propagation, pathogen entry, and host-pathogen interactions among others. A set of 295 cellular cofactors282

(of host) are essential for replication of influenza virus in the early stage [61]. Among these cofactors, 181 are283

highly significant in host-pathogen interactions, 219 help in efficient influenza virus growth, 23 have role in284

vital entry and 10 are required for post entry steps of virus replication. Small molecule inhibitors of multiple285

factors, including vATPase and CAMK2B, go against influenza virus replication. A set of 116 Dengue Virus286

Host Factors (DVHF) are needed for the propagation of DENV-2 (dengue virus type 2) [115]. Among 82287

human homologs of dipteran DVHF, 42 have been identified to be human DVHF. A set of 311 host factors288

have been found to be responsible for the growth of HIV-1 [148]. Considering HIV dependency factors ob-289

tained previously in [12] [148], it is observed that the cardinality of the set of intersection is 311 host factors.290

Six newly identified host factors are AKT1, PRKAA1, CD97, NEIL3, BMP2k and SERPINB6 [148]. A set291

of 250 such factors in HIV has been identified [12]. Rab6 and Vps53 play role in viral entry, and TNPO3 is292

important for viral integration and Med28 for viral transcription. HDF genes show a stronger presence in the293

immune cell, thus allowing the viruses to evolve in the host cells which perform the life cycle functions needed294

for them to survive. A set of 213 host factors and 11 HIV encoded proteins have been found responsible for295

HIV-1 replication [12]. Among them, a few proteins help in regulation of ubiquitin conjugation, DNA damage296

response, proteolysis and RNA splicing. Forty new factors play a vital role in the process of initiation and/or297

kinetics of DNA synthesis. Fifteen proteins with different functions have been found to play an significant role298

in nuclear import or viral DNA integration.299

300

Pathogens, like M. laprae, cannot survive independently. Hence, they convert the glial cells of a host into301

progenitor cells using which it can survive and spread infection inside the host [55]. It alters the genetic struc-302

ture of the adult Schwann cells to form the progenitor cells. However, it is still unknown how long M. laprae can303

survive in the de-differentiated Schwann cells as they will eventually differentiate back into adult Schwann cells.304

305

Often apoptosis of host factors has been found to be involved in bacterial growth and sustenance inside306

host [149]. Apoptosis contributes to the processes of host cell deletion method, triggering of inflammation307

and defense mechanism. Apoptosis by the pathogen Bordetella pertussis allows Bordetella to survive in the308

introductory stages of infection. After the pathogen has successfully colonized the tissue of the host, it stops309

producing the toxin adenylate cyclase hemolysin.310
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311

Biofilm formation plays a major role in host-pathogen interactions. This is a mechanism of pathogens by312

which they form a biofilm for their survival in the host, often utilizing degraded host proteins Leucobacter313

chromiireducens subsp. solipictus strain TAN 31504 forms biofilm. Exposure to TAN 31504 leads to change314

in a few innate immunity related genes in C. elegans [89]. Esp (a serine protease secreted by S. epidermidis)315

degrades 75 proteins of Staphylococcus aureus by proteolytic activity, which include 11 proteins essential for316

the formation of biofilm [122]. Esp also degrades several human receptor proteins involved in colonization and317

infection by the pathogen for the benefit of the host.318

319

320

2.4 A host’s immunological capability to control/eliminate the pathogen321

322

In order to prevent occurrence of infection/disease, the host body launches immune response with respect to323

the pathogenic invasion, i.e., high expression of certain genes [123], autophagy [119, 132], role of dendritic324

cells [84, 106], glycoconjugates [86, 87] and iron [32, 93] in activation/alteration of host immune system.325

326

Host genes play an important role in its immune response. Mutated β-catenin homolog bar 1 or home-327

obox gene egl-5 of C. elegans, has resulted in defective response and hypersensitivity to Staphylococcus328

aureus [57]. Bar-1 and the fgl-5 genes function parallel to the immune response pathway taken up by C.329

elegans. Over expression of egl-5 resulted in modification of NF-κB dependent TLR2 (Toll-like receptor 2)330

signaling in epithelial cells suggesting the role played by these two genes in immune defense of a host. Pro-16331

in E cadherin is responsible for host specificity towards the human pathogen Listeria monocytogenes [73].332

E-cadherin of mouse, which is 85% similar to E-cadherin of human, denotes the entry of bacterial pathogen,333

Listeria monocytogenes, by not allowing E-cadherin to interact with bacterial surface protein internalin. If334

Proline (Pro) in the position 16 of amino acid in human is replaced by Glutamic acid (Glu) then interaction335

with internalin is disabled. However in mouse, if Glu is substituted by Pro then interaction with internalin is336

enabled. On Mtb interaction with mice, a group of 67 genes in an immuno-competent host has showed a high337

level of expression than the immuno-deficient host often in 21 days. This shows that 67 genes are responsible338

for immunity of mice (host) [123].339

340

Autophagy is another mechanism of hosts defense against pathogen. Autophagy can be used in the elim-341

ination of Mtb [132]. LRG-47 initiates autophagy according to the study carried out by Singh et al. [119].342

IRGM (Immunity-related GTPase family M protein) also plays role in autophagy and degradation of intracel-343

lular bacillary load.344

345

Dendritic cells (DCs) play a vital role in the activation of the immune system on encountering a pathogen [106].346

DCs are summoned to the lamina propria of the small intestine after bacterial infection. The number of DCs347

summoned depends on the pathogenicity of microorganisms confronted. Infection stimulates the release of a348

variety of soluble factors, including chemokines, which facilitate the summoning of DCs, and cytokines that349

are strong arbitrators of DC activation. Pathogens, viruses and their components can activate DCs directly.350

One of the important characteristics of DCs is their ability to migrate. During some infections, this property351

may have a harmful as well as a favorable side. Relocation of pathogen-laden DCs from the periphery into352

lymph nodes leads to the activation of T cells. On the other hand, it contributes to the spread of infection353

within the host.354

355

Glycoconjugates can alter the immune system of human body. Immunomodulatory components of Mtb356

are phosphatidyl-myo-inositol (PMI), lipomannan (LM) and lipoarabinomannan (LAM). Apart from LM and357

LAM, mannose also contributes to the synthesis of multiple glycosylated proteins and also polymethylated358

polysaccharides in Mycobacteria [86]. These molecules are synthesized by both pathogenic and non-pathogenic359

species. Many of the genes involved in biosynthesis of these glycoconjugates are important for survival of My-360

cobacteria [109,110]. Only serine-threonine kinases have been predicted to take part in the regulation process361

of Mycobacterial glycosyltransferases [3, 87]. The interaction of Mycobacteria with the pattern recognition362

receptors may be an influencing factor for the functioning of the inflammatory signals, hence determining the363

way in which the immune system reacts [3, 87].364

365

Iron plays an crucial role in the secretion of cytokines and in the activity of the transcription factors, af-366

fecting the immune response [32, 93]. Iron homeostasis is controlled by immune cell derived mediators and367

acute phase proteins. An effective method of host defense is to restrict the supply of iron to the pathogens.368
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Pathogens have evolved to utilize iron as it is found plenty in the host. The control of iron homeostasis is one369

of the main issues, as it can be controlled by the host or the pathogen for their benefit.370

371

With such kind of diverse mechanisms involved at each step of pathogen infection, predicting the host-372

pathogen interactions are extremely crucial. However, prediction of interactions among the huge number of373

host and pathogen proteins do pose a real-time experimental problem. Hence, many in silico prediction meth-374

ods have been devised to abate such issues. They effectively provide the primary screening of the possible375

interactions and provide a list of highly probable interactions, which can then be experimentally verified. In376

the following section, we have listed and described a few of them.377

378

379

3 Methods for Prediction of Host-Pathogen Interactions380

Predictions in the domain of host-pathogen interactions play a vital role in designing rational-therapeutic381

measures including drugs. Sometimes, experimental procedures can be cumbersome, time-consuming and ex-382

pensive. Experimenting with all possibilities takes a lot of time. Prediction methods with the help of machine383

learning can overcome such problems. They can be used to predict the putative data first, which satisfies384

certain conditions. Then the predicted set can be verified experimentally, which will engage far less time and385

resources. The respective subsections describe some of the widely used techniques for in silico prediction386

of host-pathogen interactions. One or more of these methods can be used for prediction of genes, proteins,387

factors and pathways among others of both the host and pathogen. Experimental and data related aspects of388

these techniques have been covered in Section 2.389

390

391

3.1 Biological reasoning based prediction of host-pathogen interactions392

393

The most extensively explored way by which a pathogen interacts with the host, is by PPIs. Pathogen proteins394

interact with host proteins for invading the host. Proteins of a pathogen can affect a host and its environ-395

ment in multiple ways. They can directly bind with host protein(s) and affect downward cascades of reactions396

preventing normal function(s) of host. They can even compromise a host’s immunological defenses by mis-397

guiding and weakening it. They can even utilize the components of a crumbling harsh anaerobic environment398

of a immune-compromised host. Hence predicting the putative PPIs between a pathogen and its host(s) is399

of paramount importance. In order to foretell whether a host protein can interact with a pathogen protein or400

vice-versa, the following categories of methods can be used.401

402

403

3.1.1 Homology based prediction404

405

An interaction between a pair of proteins in one species is anticipated to be conserved in its related species [79].406

Prediction of host-pathogen PPIs in Homo sapiens (as host) and Plasmodium falciparum (as pathogen) [64]407

considers interaction templates of human and P. falciparum genomic sequences to bring out the probable408

set on PPIs. Then homology detection algorithm as shown in Figure 3, is applied to these PPIs, to filter409

out non-homologous ones. The new set thus formed, is made to pass through the filter of stage specific and410

tissue specific expression data of P. falciparum and Homo sapiens respectively, and further filtered using the411

concept of predicted localized data. A study by Lee et al. [74] has considered orthologous pair of genes from412

18 different species to predict PPIs. Further analyzing them, 81 genes are found to be conserved in all the413

18 species, 243 genes are missing in P. falciparum but found in the rest of 17 species. Hence, these 81 genes414

and their related PPIs are probably conserved.415

416

Homology-based approaches to host-pathogen PPI prediction are widely used for their sheer simplicity and417

biological background support. Since the data needed for implementing the prediction are only the template418

PPIs and protein sequences, these approaches are adaptable and can be applied to multiple different host-419

pathogen systems.420

421

Similar is the case of molecular interaction between GBP (Galactose-Binding Protein) and LPS (Gram neg-422

ative bacterial Lipopolysaccharide). GBP from Carcinoscorpius rotundicauda performs as an anti-microbial423
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defense [76]. Most importantly, GBP shares architectural and functional homology to human proteins. There-424

fore there is a probability of some human protein and LPS interactions. Moreover, there are 6 Tectonic425

domains containing LPS binding sites in GBP. GBP acts as a bridge between LPS and CRP (C- Reactive426

Protein) by indulging in GBP-LPS and GBP-CRP interactions with the aim at forming a stable pathogen427

recognition molecule. These interactions have indicated that Tectonin domains can differentiate between host428

and pathogen proteins.429

430

Homology-based approach have their own set of weaknesses. In an infection, two proteins in a predicted431

PPI may actually have very low probability to be present together. Therefore, host-pathogen PPIs predicted432

completely on the homology basis, without taking into consideration other biological properties of the proteins433

involved, may not be very dependable. Further information is needed to increase the accuracy of the prediction.434

An investigation by Wuchty and Stefan [143] has described filtering of the PPIs predicted by the homology435

based approach using a random forest classifier. Then the result has been filtered according to expression and436

molecular characteristics. It has led to a potent subset of proteins that indeed interact.437

438

439

3.1.2 Structure based prediction440

441

When a pair of proteins have structures that are similar to a known interacting pair of proteins, it is justifiable442

to believe that the former are likely to interact in a way similar to the latter. Likewise, several investiga-443

tions have used structural information to recognize the similarity between query proteins (i.e., proteins in444

the host and pathogen) and template PPIs (i.e., known interacting protein pairs), and conclude that host-445

pathogen protein pairs, which match some template PPIs, indeed interact. The method is depicted in Figure 4.446

447

A computational method for prediction of PPIs representing host-pathogen interactions has been devised448

by Davis et al. [28]. Their proposed method has first scanned the host and pathogen genome, searched for449

structural similarity to the already known protein complexes, and then analyzed their probable interactions,450

using the physical structures of the proteins. The result finally has undergone a filtering by tissue specific451

expression data of host proteins and stage specific expression data of pathogen proteins, leading to a potent452

set of proteins that have a high probability to interact.453

454

Mapping of PPIs between the dengue virus, and its human and insect host has been carried out by Doolittle455

et al. [34]. They have also predicted the interactions depending on structural similarity of the host and the456

pathogen proteins. It has also focused on predictions relevant to stress, unfolded protein response and inter-457

feron pathways. Another work by Dolittle et al. [33] has predicted PPIs between HIV-1 and Homo sapiens458

based on structural similarity. It has modeled a network of interactions between HIV-I and human proteins.459

Structurally similar proteins from host and HIV-1, has been retrieved, and from this structurally similar set460

of proteins, the known interactions has been mapped. The resultant subset has again been screened with461

factors, like cellular co-localization and RNAi screen to get a more determined set that has higher probability462

to interact. The result has highlighted on a more potent set of proteins with higher chances of forming PPIs463

representing the interactions among human and HIV-1.464

465

466

3.1.3 Domain/motif interaction based prediction467

468

Here the methodology for prediction of host-pathogen PPIs involves integration of known intra-species PPIs469

with protein domain profiles, and thereby predicting PPIs between a host and a pathogen [37]. For a set470

of intra-species PPIs, the functional domains are identified for each interacting proteins. For each pair of471

functional domain, Bayesian statistics is used to compute the possibility of two proteins containing that pair472

of domain will interact. The method is shown in Figure 5. It has been applied to Homo sapiens-Plasmodium473

falciparum host-pathogen system, and has successfully predicted 516 PPIs. Human proteins anticipated to474

interact with the same Plasmodium protein are close to each other in the human PPI network, and Plasmod-475

ium pairs predicted to interact with the same human protein are co-expressed in DNA micro-array datasets476

measured during various stages of the Plasmodium life cycle.477

478

Prediction of PPIs, based on motif conserved in HIV-1, has been performed by Evans et al. [43] and Bertoletti479

et al. [8]. The similarity between the binding motifs shared by virus and host proteins plays an important part480

in the crosstalk between virus and host. Similarly, the study by Bertoletti et al. [8] has attempted to predict481
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PPIs based on motif conserved in HIV-1. It has also highlighted the role of chemokines as a factor for liver482

inflammation.483

484

485

3.2 Machine learning based predictions of host-pathogen interactions486

487

Machine learning based prediction methods are extensively used for detecting host-pathogen interactions488

as shown in Table 1. This table lists a few machine learning methods used for prediction of various aspects of489

host-pathogen interactions, in different species. Moreover, the particular domain knowledge is also included in490

this table. The sub-area of research in some cases is referred as “Pathogen Informatics”. Supervised learning491

has been used for the prediction of PPIs in the host-pathogen domain by Tastan et al. [124]. The work has492

considered 35 features, including tissue distribution, gene expression profile, gene ontology, graph properties493

of human interactome, sequence similarity, post-translational modification similarity to neighbor and HIV-1494

protein type features among others. Then the authors have selected the top 3 and top 6 features which are495

of maximum importance to classify the given data set into interacting and non-interacting classes. Random496

Forest classifier has been used as a tool for supervised learning with these feature set for training and resulting497

in MAP (Maximum a Posteriori) of 23%. From this computation, it has been concluded that graph and498

neighbor similarity features contribute to a better classification.499

500

Prediction of proteins secreted by Type III (T3) secretion system has been carried out by Arnold et al. [4].501

The authors have examined the amino acid composition and the secondary structure of the N-terminal of 100502

experimentally verified effector proteins, and used them for identification of T3 secretion signal. They have503

used Naive Bayes algorithm for classification. The training samples have been grouped depending on how504

similar they are, and this similarity has been measured by the Smith-Waterman local alignment algorithm.505

The input feature set has included frequencies of amino acid, amino acid properties and short combinations of506

them. Finally, the feature selection strategies have been applied to identify the most important feature to do507

away with computational complexity. In another attempt for prediction, the authors have used derived features508

from the secondary structure elements. They have used PSIpred software [82] to predict the structure. From509

the predicted structures, the features of the input vector have been formulated.510

511

In another attempt to predict bacterial Type III secreted (T3S) effectors, a distinct N terminal position-512

specific amino acid composition feature has been found in more than 50% of T3S proteins [136]. Bi-profile513

Bayes method has been used in this particular work for feature extraction. Then the entire dataset along with514

the new feature has been analyzed with a new SVM based classifier. The new classifier has classified T3S and515

non-T3S proteins successfully.516

517

In order to establish a relation among a host and multiple pathogens, Kshirsagar et al. [66] have devel-518

oped a method taking the similarity in infection initiated by 4 different pathogens in human host. The authors519

have used machine learning technique in the form of multi-task classification framework. The host-bacteria520

PPIs have been used as the input to the multi-task classifier, which has then classified the PPIs into interact-521

ing and non-interacting classes. Considering the biological hypothesis of similar pathogens targeting the same522

critical biological processes in a host, the classifier has minimized the empirical error on the training set and523

favored models that are biased towards the biological hypothesis. A bias term has been incorporated into the524

classifier in the form of regularizer to overcome it.525

526

A semi supervised multi-task method has been used on Homo sapiens-HIV 1 dataset [102] to predict host-527

pathogen PPIs. The method has involved both supervised and semi-supervised learning. The supervised classi-528

fier has worked on labeled PPIs data. The semi-supervised classifier has shared network layers of the supervised529

classifier and got trained with partially labeled PPIs. This entire framework has been used to improve the530

recognition of interacting pairs. The supervised classifier has done multi-tasking with a semi-supervised clas-531

sifier so that weak positive labels could ameliorate the supervised classification.532

533

For prediction of PPIs between Homo sapiens and Plasmodium falciparum, a random forest classifier has534

assessed a set of PPIs, and then filtered the result according to expression and molecular characteristics,535

leading to a subset of proteins which indeed interact among themselves [143]. It has been observed here that536

the separate sets and a combined set of predicted and experimentally verified interactions have shared similar537

characteristics. In another investigation, Kshirsagar et al. [65] have tried to improve the supervised learning538

based prediction of PPIs between Salmonella-human and Yersinia-human. This has been done by replacing539
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the missing values of the dataset by the values generated by cross species information along with group lasso540

technique with regularization (obtained 77.6% precision). In order to impute values, localized-nearest neighbor541

approach (that uses sequence similarity) has been used as the basis to compute locality.542

543

Data mining also forms an integral part of machine learning. Retrieved data about host-pathogen inter-544

actions in a few cases reflects information in two different ways, i.e., feature based (SVM) [128] and language545

based [19]. The investigation by Chaussabel et al. [19] has used hierarchical clustering algorithm, by taking the546

literature available to identify functionally and transcriptionally homologous pair of genes as input. Removal547

of noise from the PPI databases has been done by removing PPIs that have less probability of taking place.548

Each such PPI has then been given a score. Then these PPIs have been hierarchically clustered to obtain549

the PPIs likeliness of occurrence. In this way, it has been found that out of 12122 binary PPIs obtained from550

BioGRID, 7504 PPIs are less likely to take place.551

4 Online Repositories for Host-Pathogen Interactions552

Host-pathogen interactions data can be obtained from several databases and repositories. We have summa-553

rized some of these repositories in Table 2. Some of these databases are referred purely for their data content,554

i.e., genome, proteome and metabolic pathway data [137], virus-virus, host-virus and host-host interaction555

networks [95], PPIs of hosts and pathogens [69], literature based viral-human protein interactions [18], ex-556

perimentally verified pathogenic, virulence and effector genes of fungal pathogens [140], human signaling and557

regulatory pathways [113], information on specific biodefense and public health pathogens [121], 3D viral558

proteins [116], information on invertebrate vectors of human pathogens [71], and a collection of genus spe-559

cific databases [6] among others. Some of these databases even have integrated in-house tools, i.e., BLAST560

interface [35] and browser [147] for host-pathogen interactions data analysis. Moreover, we have described561

some tools [44] used in analysis and visualization of these kinds of data.562

563

PAThosystems Resource Integration Center (PATRIC) [137] includes a relational database, analytical pipelines,564

and a website that supports querying, browsing, data visualization, and allowing the download of raw and565

curated data in standard formats. Currently, the database houses complete sequences for viral and bacterial566

genomes, hence providing an all-inclusive bioinformatics resource for pathogens.567

568

Pathway Interaction Gateway (PIG) provides a text based search and a BLAST interface for searching the569

host-pathogen PPIs. Each entry in PIG incorporates information on the functional annotations and the do-570

mains present in the interacting proteins [35].571

572

VirHostNet (Virus-Host Network) [51, 95] is a public knowledge base specialized in the management and573

analysis of integrated virus-virus, host-host and virus-host interaction networks coupled with their functional574

annotations. VirHostNet contains data of virus-host and virus-virus interactions constituting more than 180575

distinct viral species. VirHostNet Web interface provides suitable tools which allow effective query and visu-576

alization of infected cellular network.577

578

HPIDB (Host-Pathogen Interaction Database) [69] basically contains experimentally confirmed and predicted579

PPIs of hosts and pathogens.580

581

GPS-Prot [44] is a software tool that permits users to easily create an all-inclusive and integrated HIV-host582

networks. Its web-based format, which requires no software installation or data downloads, gives it an extra583

edge over other visualization tools. GPS-Prot enables users to quickly generate networks that amalgamate584

both genetic and protein-protein interactions between HIV and its human host, into a single representation.585

586

VirusMint [18] contains protein interactions between viral (papilloma viruses, HIV-1, Epstein-Barr, hepati-587

tis B, hepatitis C, herpes and Simian virus 40) and human proteins reported in the literature. VirusMINT588

presently stores interactions constituting more than 490 unique viral proteins from more than 110 different589

viral strains.590

591

PHIDIAS (a Pathogen Host Interaction Data Integration and Analysis System) [144] is a database and analy-592

sis system to curate, analyze and address different scientific issues in the areas of host-pathogen interactions593

(PHI, or called host-pathogen interactions or HPI).594

595
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MvirDB [147] integrates DNA and protein sequence information from multiple databases. Entries in MvirDB596

are hyper-linked back to their original sources. A blast tool enables the user to blast against all DNA or protein597

sequences in MvirDB, and a browser tool enables the user to explore the database to retrieve virulence factor598

descriptions, sequences and classifications, and to download sequences of interest.599

600

PHI-base [140], a web-accessible database currently catalogs experimentally verified virulence and effector601

genes from fungal and oomycete pathogens. These pathogens interact with animal, plant and fungi as hosts.602

603

PID [113] is a freely available collection of curated and peer-reviewed pathways composed of human molecular604

signaling and regulatory events and key cellular processes. PID offers a range of search features to facilitate605

pathway exploration.606

607

BioHealthBase [121] is a public bioinformatics database and analysis resource for study of specific biode-608

fense and public health pathogens, like Francisella tularensis, Mycobacterium tuberculosis, Influenza virus,609

Microsporidia species and ricin toxin. It serves as a substantial integrated repository of data imported from610

public databases and data derived from various computational algorithms and information curated from the611

scientific literature. Its 3D visualization capacity allows researchers to view proteins with their key structural612

and functional features highlighted.613

614

VPDB (Viral Protein Structural Database) [116] is an interactive database for three dimensional viral pro-615

teins. It provides an all-inclusive resource, with an emphasis on the description of derived data from structural616

biology. At present, VPDB includes viral protein structures from more than 277 viruses with more than 465617

virus strains.618

619

VectorBase [71, 72, 85] is a web-accessible data repository storing information about invertebrate vectors620

of human pathogens. It annotates and maintains vector genomes providing an integrated resource for the621

research community. It hosts data related to 9 genomes, i.e., mosquitoes (3 Anopheles gambiae genome),622

Aedes aegypti and Culex quinquefasciatus), body louse (Pediculus humanus), tick (Ixodes scapularis), tsetse623

fly (Glossina morsitans) kissing bug and (Rhodnius prolixus). The data spans across genomic features, ex-624

pression data, population genetics and ontologies.625

626

EuPathDB [5, 6] is an integrated database covering the eukaryotic pathogens of the genera Giardia, Cryp-627

tosporidium, Neospora, Leishmania, Toxoplasma, Plasmodium, Trypanosoma and Trichomonas. These groups628

are supported by a taxon-specific database built upon the same infrastructure. EuPathDB portal provides an629

entry point to all these resources, and the opportunity to leverage orthology for searches across genera.630

631

Similarly, a number of other databases, like PHISTO [127], ViPR [99], HoPaCI-DB [9], VFDB [21] [145] [20],632

EDWIP [97], AquaPathogen X [41], are available, which help in the host-pathogen interactions domain re-633

search.634

635

636

5 Discussions and Future Scopes637

In this section, we discuss multiple faucets of host-pathogen interactions research, the shortcoming of the638

previously defined methodologies as discussed in Sections 2 and 3 and the future scopes associated with the639

aforesaid methodologies. It takes both the host and pathogen points of view into account. We discuss the640

ways in which a pathogen can attack its host, the proteins emitted by a pathogen responsible for perturbing641

normal functionality of host, the genes responsible for such proteins, silencing and hijacking gene mechanism642

of pathogens, inhibiting the functions of macrophages, along with genes and proteins needed for their survival643

inside a host. From the hosts point of view, we also discuss about the factors of pathogen that activates644

immune response. Salient features of the discussion is given in Table 3.645

646

The genes of multiple strains of an organism have been studied in several investigations [58, 81, 96] to un-647

derstand the infection mechanism of these strains on the host, and to locate the difference between them. In648

order to survive in a host, a pathogen can either perform hijacking [105] or it can use the existing environment649

to survive [12]. The effect of the genes in different strains of a pathogen has been studied. There is still650

uncertainty in the generalization/specialization of interactions in different strains of pathogens. A study has651
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suggested that different strains of the same pathogen have different methods of invasion [81]. On the contrary,652

a counter example has also been provided in [26], which indicates that two strains of Mycobacterium have653

homologous genes required for Snm.654

655

Influenza, DENV-2 and HIV have been in the limelight for identification of the host factors. Other pathogens656

too need to be taken into account. Inhibition of macrophage is a prospective aspect of research in bioinfor-657

matics. The inhibition mechanism needs to be studied in more pathogens apart from the mostly studied ones658

to find similarity between the inhibition mechanisms among these organisms.659

660

Machine learning based prediction methods have been applied mainly to PPIs. However, protein-ligand in-661

teractions and hence prediction of pathways (excluding signal transduction pathways) via machine learning662

methods have not been attempted much. Different pathogens become drug resistant and form new path-663

ways, and these newly formed pathways can perturb the present host pathways in an unknown way. Similarly,664

machine learning algorithms in the field of pathway predictions are needed, which would mainly consider665

protein-ligand binding. Along with reaction dynamics are needed to be known too, as pathways are nothing666

but chain of reactions. Prediction of Type III secreted bacterial proteins by machine learning techniques is667

also a challenging task. However, a major drawback in the area of prediction of host-pathogen PPIs, are the668

unavailability of data sets for different pathogens. Moreover, there is always this lurking issue of biological669

validation of the predicted PPIs.670

671

Some of the organisms studied for the exploration of host-pathogen PPIs are Homo sapiens-Plasmodium672

falciparaum [37,64,74,143], Homo sapiens-Dengue virus [34], Homo sapiens-HIV 1 [8,33,43]. However, there673

are many more host-pathogen pairs waiting in the line for these kinds of studies. In addition, homology-based674

approaches have their own inherent weaknesses. In real scenario, two proteins in a predicted PPI may actu-675

ally have little opportunity to be present close enough to interact with each other. Therefore, host-pathogen676

PPIs predicted entirely on the basis of homology, without considering other biological characteristics of the677

proteins involved, may not be reliable. Additional information must be used to increase the accuracy of the678

prediction and make the predictions biologically sound. Keeping this in mind, the study by Wuchty [143] has679

filtered the predicted PPIs based on homology using gene expression and molecular characteristics. It has led680

to the formation of a concrete set of PPIs closer to biological scenario. The prediction of PPIs by comparative681

modeling [28], have very stringent filters leading to the formation of a smaller and robust set of PPIs.682

683

Supervised, unsupervised and semi supervised learning have been mostly used for prediction of host-pathogen684

PPIs. The organisms for which these predictions have been made are mainly Homo sapiens-HIV1 [102, 124],685

Homo sapiens-Plasmodium falciparum [143] and Homo sapiens-Saccharomyces cerevisiae [25]. Both Tastan686

et al. and Yanjun et al. [102,124] have applied their respective algorithms on the same dataset which basically687

restricts the contribution of the articles. The performance of Random Forest based classifier is negligibly better688

than the Multi-Layer Perceptron classifier [102]. Some research articles have selected the top 6 and top 3689

features among 35 features to predict whether a protein is interacting or not [124]. This is not a novel way of690

prediction since the interaction between proteins depends on all of its features even if by negligible amount691

which should not be ignored.692

693

A flaw is often noticed in the choice of a dataset. In a semi-supervised based learning approach to iden-694

tify PPIs [102], the negative dataset is way extensive than the positive one. The negative (non-interacting)695

data set has approximately 16000 pairs of proteins while the experimentally verified positive (interacting)696

dataset has only 158 pairs of protein. Training with such a dataset might lead to a biased classifier and the697

classifier would be inclined to predict most test pairs as non-interacting. Moreover, the logic used behind se-698

lecting non-interacting dataset is based on a random list of pairs of proteins which do not fall into the positive699

set. It is always a risk, since there is no experimental evidence that the selected negative pairs will not interact700

at all. There may be several interacting pairs present among the negative set. Another study has been done701

for predicting proteins secreted by Type III secretion system based only on structural and compositional aspect702

of the proteins [4]. These studies should include other factors, like expression and molecular characteristics.703

704

One notable thing is that a few attempts have been made on metabolic pathways. For host-pathogen in-705

teractions, most of the work has been done with signal transduction pathways. If enzyme(s) from a pathogen706

is introduced into a host, they get involved with more than one host pathways. There is no tool available707

which would take a list of protein (enzyme) names and provide the pathway (just one pathway based on these708

enzymes) based only on those enzymes (at least 90%). Moreover, a pathogen can be associated with more709
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than one disease. Such diseases, for which a pathogen is responsible, need to be looked into. The scenario710

becomes more complex, when a host suffers from two or more diseases simultaneously, it implies presence of711

multiple pathogens responsible for multiple diseases in a host in real time. Such kind of real-time simulation712

studies are hardly done.713

714

An important aspect that needs to be considered is that some pathogenic proteins prevent the working715

of macrophage. This is a serious problem in host-pathogen domain. Drugs are needed that would facilitate the716

working behavior of a macrophage. Drugs are also needed for the prevention of formation of intracytoplasmic717

vesicle that HIV-1 uses [22] to prevent identification by macrophages. Formation of biofilm [89,122] is another718

domain that needs to be looked upon. Breaking the biofilm formed by pathogens is indeed recommended to719

avoid the spread of infection. More attention is needed in this domain, given the rate at which new infectious720

pathogens are emerging along with their variety of degree of infection.721

722

Hardly any research have been done based on the automated image processing based techniques available for723

predicting host-pathogen interactions. A study by Mech et al. [83] has come up with a technique of a more724

robust analysis of microscopy images of macrophages that are made to coexist with different A. fumigatus725

strain. Usually the images are manually analyzed, which is time consuming and error prone. The authors used726

the feature set which includes size, shape, number of cells and cell-cell contacts. By analyzing the images,727

it has been found that different mutants of A. fumigatus have an impact on the ability of the macrophages728

to adhere and phagocytose the conidia. It has been observed that the rate of phagocytosis is higher in pksP729

mutant of A. fumigates, while it is not the same case in the other strains.730

6 Conclusions731

In this review, we have covered various aspects of host-pathogen interactions. Interaction of a pathogen with its732

host(s) is always a unique mechanism. Each one of the pathogenic species has specific mechanism(s) to interact733

with their host. The different mechanisms of a number of species have been included in this review along with734

the similarities and similar factors in the attacking mechanism(s) of pathogens. The review has introduced735

a brief history and introduction of the host-pathogen interactions research field followed by classification of736

host-pathogen interactions based on gene(s), protein(s), host-factor(s), involved pathway(s) and inhibition737

mechanism of macrophage(s). It has listed prediction methods used in the host-pathogen interactions domain738

based on biological reasoning (homology, structure and motif interaction), machine learning (unsupervised,739

semi-supervised and supervised) and sometimes both the methods. Various data sources used for research in740

this domain have also been listed. The review concludes with a general discussion of the topic and future741

scopes followed by a conclusion. The field of host/pathogen interactions is emerging as a crucial area of742

infectious disease research in the post-genomic era. It is a budding research field where new discoveries are743

getting announced almost each day throughout the globe. The discovery of dynamics of the host-pathogen744

interactions will aptly facilitate further development in the field of discovering new drugs and new therapies745

for different diseases.746
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Kosack, K.E., Köhler, J.: PHI-base update: additions to the pathogen–host interaction database. Nucleic Acids Research1074

36(suppl 1), D572–D576 (2008)1075

142. Wooldridge, K.: Bacterial secreted proteins: secretory mechanisms and role in pathogenesis (2009)1076

143. Wuchty, S.: Computational prediction of host-parasite protein interactions between P. falciparum and H. sapiens. PLoS1077

One 6(11), e26,960 (2011)1078

144. Xiang, Z., Tian, Y., He, Y., et al.: PHIDIAS: a pathogen-host interaction data integration and analysis system. Genome1079

Biology 8(7), R150 (2007)1080

145. Yang, J., Chen, L., Sun, L., Yu, J., Jin, Q.: VFDB 2008 release: an enhanced web-based resource for comparative1081

pathogenomics. Nucleic Acids Research 36(suppl 1), D539–D542 (2008)1082

146. Zelle, M.R.: Genetic constitutions of host and pathogen in mouse typhoid. Journal of Infectious Diseases 71(2), 131–1521083

(1942)1084

147. Zhou, C., Smith, J., Lam, M., Zemla, A., Dyer, M.D., Slezak, T.: MvirDB-a microbial database of protein toxins, virulence1085

factors and antibiotic resistance genes for bio-defence applications. Nucleic Acids Research 35(suppl 1), D391–D394 (2007)1086

148. Zhou, H., Xu, M., Huang, Q., Gates, A.T., Zhang, X.D., Castle, J.C., Stec, E., Ferrer, M., Strulovici, B., Hazuda, D.J.,1087

et al.: Genome-scale RNAi screen for host factors required for HIV replication. Cell Host & Microbe 4(5), 495–504 (2008)1088

149. Zychlinsky, A., Sansonetti, P.J.: Apoptosis as a proinflammatory event: what can we learn from bacteria-induced cell death?1089

Trends in Microbiology 5(5), 201–204 (1997)1090



20 Rishika Sen et al.

VIRUS: 

Hepatitis, SARS, Herpes, 
Mono, AIDS, HIV, Warts, 
Influenza, Chicken pox, 
Cold sores, Small pox, 
Gold germs, Bird flu 
H5N1, Measles, 
Norovirus, Tetanus, 
Yellow fever, Typhoid, 
Ebola, Hemorrhagic fever 

BACTERIA: 

Tuberculosis, 
Pneumonia, Anthrax, 
Urinary tract, Infection, 
Peritonitis, E. Coli, Strep 
throat, Typhoid, 
Stomach ulcers, 
Salmonella, Tularemia, 
Morgellons, Lyme 
disease 

FUNGI: 

Ringworm, Yeast 
infection, Advanced 
pneumonia, 
Histoplasmosis, 
Candidiasis, 
Cryptococcus 

 

 

PROTOZOA: 

Malaria, Giardiasis, Changas 
disease, Cryptosporidiosis 

PARASITES: 

Round worm, Tape worm, 
Morgellons, Triginosis 

PATHOGENS  

Fig. 1: Classification of some common pathogens and the list of diseases caused by them
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Fig. 2: Classification of Host-Pathogen Interactions

Host Proteins Pathogen Proteins 

Extraction of Homologs 

of Host Proteins 

Extraction of Homologs of 

Pathogen Proteins 

Probable PPIs 

between Host and 

Pathogen Proteins 

Predicted filtered PPIs between 

Host and Pathogen Proteins 

Filtering based 

on stage and 

tissue  specific 

expression 

Experimental verification 

of the Predicted PPIs  
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Fig. 4: Structure based predictions of host-pathogen interactions
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Table 1: Summary of the machine learning based tools used in the domain of host-pathogen interactions.

Machine Learning Method Species Reference Domain

Random Forest Classifier HIV1-Homo sapiens Tastan et al. [124] PPI

Naive Bayes Classifier Phylum Chlamydiae and genera Es-
cheria, Yersinia and Pseudomonas

Arnold et al. [4] T3SS

Support Vector Machine Ralstonia solanacearum Wang et al. [136] T3SS

Multi-task Classifier using Sup-
port Vector Machine

Yersinia pestis, Francisella tularensis,
Salmonella and Bacillus anthracis

Kshirsagar et al. [66] PPI

Semi Supervised Learning using
Multi-layer Perceptron

HIV1-Homo sapiens Yanjun et al. [102] PPI

Random Forest Classifier Homo sapiens-Plasmodium falciparum Wuchty [143] PPI

Group lasso with l1/l2 regular-
ization

Homo sapiens-Salmonella, Homo
sapiens-Yersinia

Kshirsagar et al. [65] PPI

Support Vector Machine None Thieu et al. [128] Data Mining

Table 2: List of online repositories storing data related to host-pathogen interactions

No. Name URL

1 PATRIC [137] http://patricbrc.org/portal/portal/patric/Home

2 PIG [35] http://patricbrc.org/portal/portal/patric/HPITool

3 VirHostNet [95] http://virhostnet.prabi.fr/

5 HPIDB [69] http://agbase.msstate.edu/hpi/main.html

6 GPS-Prot [44] http://gpsprot.org/

7 VirusMint [18] http://mint.bio.uniroma2.it/virusmint/Welcome.do

8 PHIDIAS [144] http://www.phidias.us/introduction.php

9 MvirDB [147] http://mvirdb.llnl.gov/

10 PHI-base [140, 141] http://www.phi-base.org/

11 PID [113] http://pid.nci.nih.gov/

12 BioHealthBase [121] http://www.biohealthbase.org/

13 VPDB [116] http://www.vpdb.bicpu.edu.in/

14 VectorBase [71] https://www.vectorbase.org/

15 EuPathDB [6] http://eupathdb.org/eupathdb/

16 PHISTO [127] http://www.phisto.org/

17 ViPR [99] http://www.viprbrc.org/brc/home.spg?decorator=vipr

18 EDWIP [97] http://cricket.inhs.uiuc.edu/edwipweb/edwipabout.htm

19 HoPaCI-db [9] http://mips.helmholtz-muenchen.de/HoPaCI

20 VFDB [21] http://www.mgc.ac.cn/VFs/main.htm

21 AquaPathogen X [41] http://pubs.usgs.gov/fs/2012/3015/
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Table 3: Summary of host protection and pathogen attacking mechanisms.

Host Protection Mechanism Pathogen Attacking Mechanism

Protein-Protein Interactions (GBP galactose-binding pro-
tein)

Protein - Protein Interactions (target hub protein)

shRNAs (pathogen gene knock down) microRNAs (protection against cellular micro-viral re-
sponse,gene silencing)

Autophagy MAM (multivariate adhesion molecule, high binding
affinity with host during infection)

siRNAs (inhibit HIV-1 replication) Pneumolysin (virulence factor)

Macrophages Inhibition of macrophage

Restricting supply of Iron Glial cells of host (convert it into progenitor cells then
survive in the host)

None Motif mimicry (utilized by pathogens to rewire host path-
ways by co-opting SLiM mediated protein interactions)

None Biofilm formation

None Hijacking (implant own sequence in normal sequence of
host)
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