B.Sc. Semester-VI Organic Chemistry Paper-XIV

3. Heterocyclic Compounds

Coverage:

7. Pyridines : Nucleophilic Reactions

Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi

Pyridines – Nucleophilic Reactions

Regiochemical Outcome of Nucleophilic Addition to Pyridines

• Nitrogen acts as an electron sink

• β Substitution is less favoured because there are no stable resonance forms with the negative charge on *N*

• Aromaticity will is regained by loss of hydride or a leaving group, or by oxidation

Dr. Rajeev Ranjan

Pyridines – Nucleophilic Reactions

Nucleophilic Substitution $X \rightarrow V$ $X \rightarrow V$ $X = Cl, Br, l, (NO_2)$ $Nu = MeO^{O}, NH_3, PhSH etc.$

- Favoured by electron-withdrawing substituents that are also good leaving groups
- The position of the leaving group influences reaction rate ($\gamma > \alpha >> \beta$)

Pyridinium Ions – Nucleophilic Reactions

Nucleophilic Substitution

- Conversion of a pyridine into the pyridinium salt greatly accelerates substitution
- Substituent effects remain the same (α , $\gamma >> \beta$) but now $\alpha > \gamma$

Dr. Rajeev Ranjan

Pyridines – Pyridyne Formation

Substitution via an Intermediate Pyridyne

- When very basic nucleophiles are used, a pyridyne intermediate intervenes
- Pyridynes are similar to benzynes and are very reactive (not isolable)

Dr. Rajeev Ranjan

Pyridines – Nucleophilic Reactions

Nucleophilic Attack with Transfer of Hydride : Chichibabin Reaction

 $X = H (NH_3) / 2$ -aminopyridine

- A hydride acceptor or oxidising agent is required to regenerate aromaticity
- The reaction with LiNH₂ is referred to as the Chichibabin reaction.

Dr. Rajeev Ranjan

THANK YOU