B.Sc. Semester-VI Organic Chemistry Paper-XIV

3. Heterocyclic Compounds

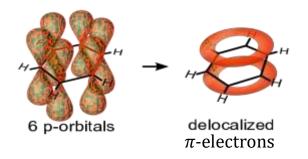
Coverage:

2. Orbital Picture and Aromatic Characteristics of Heterocyclic Compounds

Dr. Rajeev Ranjan
University Department of Chemistry
Dr. Shyama Prasad Mukherjee University, Ranchi

Orbital Picture and Aromatic Characteristics of Heterocyclic Compounds

To be classified as aromatic, a compound must have:

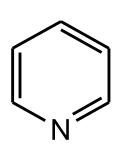

- 1. Cyclic structure
- 2. Coplanar structure.
- 3. Each atom of the ring must have a p orbital to form a delocalized π system i.e. no atoms in the ring can be sp³ hybridized instead all atoms must be sp² hybridized.

Conjugated C=C bonds (C=C-C=C)

4. Fulfill Huckel rule i.e. the system must have $4n + 2\pi$ Electrons thus by calculating n value it will be an integral number i.e. n=0, 1, 2, 3,

Erich Hückel

Dr. Rajeev Ranjan

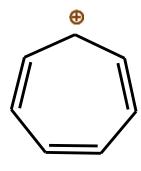

Dr. Rajeev Ranjan

Examples of Aromatic and Non-Aromatic Compounds


Examples of aromatic compounds:

n=1

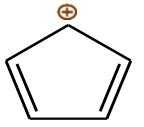
n=1


n=1

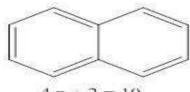
n=0

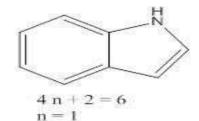
n=1

n=1

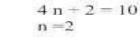

Examples of non-aromatic compounds:

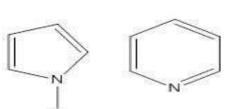
$$sp^3 C^*$$


$$n=1/2$$

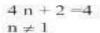

$$sp^3$$

$$n=1/2$$


Examples of Aromatic and Non-Aromatic Compounds



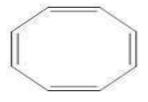
n = 1


$$4 n + 2 = 2$$

 $n = 0$

Aromatic

But

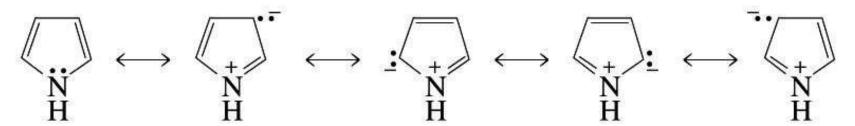


n = 1

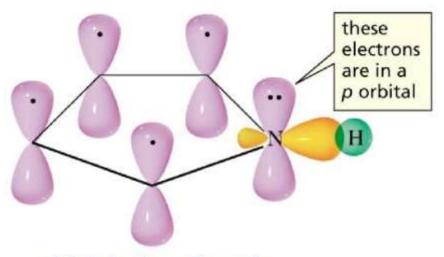
$$4 n + 2 = 4$$

 $n \ne 1$

4 n + 2 = 8 is not an integer



4 n + 2 = 4 $n \neq 0$

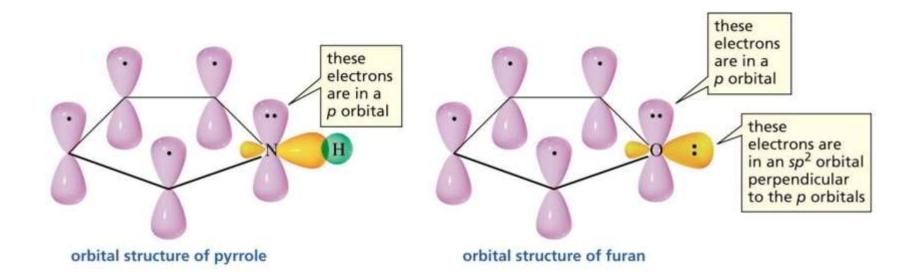

not aromatic

Orbital Picture and Aromatic Characteristics of Pyrrole

Pyrrole is Aromatic

resonance contributors of pyrrole

orbital structure of pyrrole

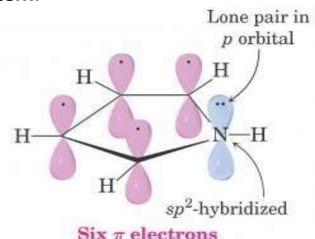

Dr. Rajeev Ranjan

Orbital Picture and Aromatic Characteristics of Furan

Furan is Aromatic

resonance contributors of furan

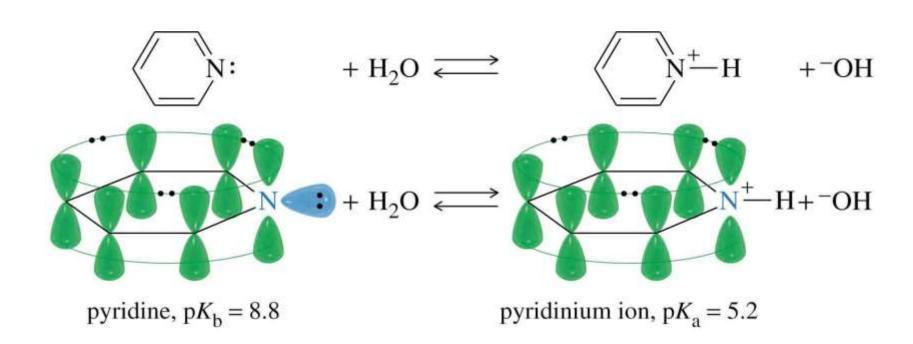
Orbital Picture and Aromatic Characteristics of Pyridine


Heterocyclic Aromatic Compounds and Hückel's Rule:

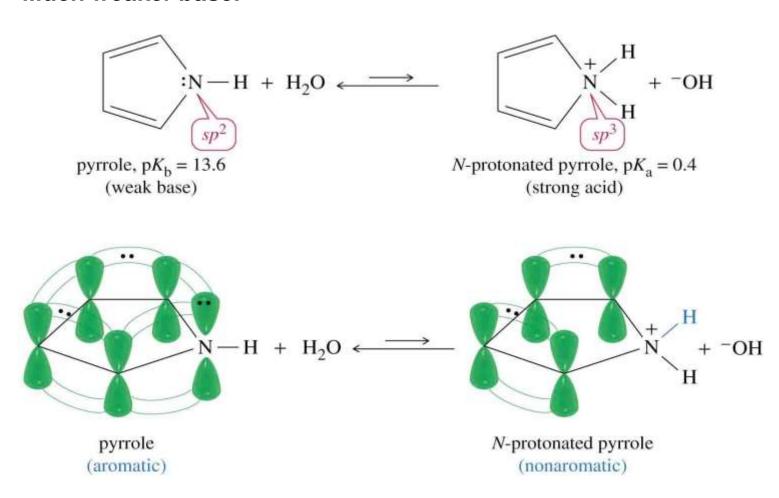
Pyridine: π -electron structure resembles benzene (6 π -electrons) The nitrogen lone pair electrons are <u>not</u> part of the aromatic system.

But in pyrrole, lone pair of electrons is delocalized in the ring.

Pyridine is Aromatic



Six π electrons


The Acidity of the Pyridinium Ion

- Heterocyclic aromatic compound.
- Nonbonding pair of electrons in sp^2 orbital, so weak base, $pK_b = 8.8$.

The Acidity of Protonated Pyrrole

Also aromatic, but lone pair of electrons are delocalized: Much weaker base.

