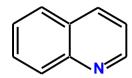
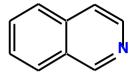
B.Sc. Semester-VI Organic Chemistry Paper-XIV

3. Heterocyclic Compounds

Coverage:


11. Quinolines and Isoquinolines: Synthesis



Dr. Rajeev Ranjan

University Department of Chemistry
Dr. Shyama Prasad Mukherjee University, Ranchi

Structure

- pK_a values (4.9 and 5.4) are similar to that of pyridine
- Possess aspects of pyridine and naphthalene reactivity e.g. form N-oxides and ammonium salts

Combes Synthesis

Conrad-Limpach-Knorr Synthesis

- Very similar to the Combes synthesis by a β -keto ester is used instead of a β -diketone
- Altering the reaction conditions can completely alter the regiochemical outcome

Skraup Synthesis

- Acrolein can be generated in situ by treatment of glycerol with conc. sulfuric acid
- A mild oxidant is required to form the fully aromatic system from the dihydroquinoline

Friedlander Synthesis

- The starting acyl aniline can be difficult to prepare
- Acidic and basic conditions deliver regioisomeric products in good yields

Isoquinolines – Synthesis

Pomeranz-Fritsch Synthesis

Bischler-Napieralski Synthesis

- Cyclisation can be accomplished using POCl₃ or PCl₅
- Oxidation of the dihydroisoquinoline can be performed using a mild oxidant

Isoquinolines – Synthesis

Pictet-Spengler Synthesis

- An electron-donating substituent on the carboaromatic ring is required
- A tetrahydroisoquinoline is produced and subsequent oxidation is required to give the fully aromatic isoquinoline