B.Sc. Semester-IV Core Course-IX (CC-IX) Organic Chemistry-III

III. Heterocyclic Compounds

22. Furan, Pyrrole and Thiophene : Electrophilic Substitution Reaction

Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi

Heterocyclic Compounds

22 Lectures

Classification and nomenclature, Structure, aromaticity in 5-numbered and 6-membered rings containing one heteroatom; Synthesis, reactions and mechanism of substitution reactions of: Furan, Pyrrole (Paal-Knorr synthesis, Knorr pyrrole synthesis, Hantzsch synthesis), Thiophene, Pyridine (Hantzsch synthesis), Pyrimidine, Structure elucidation of indole, Fischer indole synthesis and Madelung synthesis), Structure elucidation of quinoline and isoquinoline, Skraup synthesis, Friedlander's synthesis, Knorr quinoline synthesis, Doebner- Miller synthesis, Bischler-Napieralski reaction, Pictet-Spengler reaction, Pomeranz-Fritsch reaction Derivatives of furan: Furfural and furoic acid.

Coverage:

- 1. Furan, Pyrrole and Thiophene : Electrophilic Substitution Reactions
- 2. Metallation Reaction / Deprotonation Reaction

Furans, Pyrroles and Thiophenes – Electrophilic Substitution

Electrophilic Substitution – Regioselectivity

- Pyrrole > furan > thiophene > benzene
- Thiophene is the most aromatic in character and undergoes the slowest reaction
- Pyrrole and furan react under very mild conditions
- α -Substitution favoured over β -substitution more resonance forms for intermediate and so the charge is less localised (also applies to the transition state)
- Some β -substitution usually observed depends on X and substituents

X = NH 4:1 X = 0 6:1

Furans – Electrophilic Substitution

Nitration of Furans

- Nitration can occur by an addition-elimination process
- When NO₂BF₄ is used as a nitrating agent, the reaction follows usual mechanism

Bromination of Furans

- Furan reacts vigorously with Br_2 or Cl_2 at room temp. to give polyhalogenated products
- It is possible to obtain 2-bromofuran by careful control of temperature

Dr. Rajeev Ranjan

Furans – Electrophilic Substitution

Friedel-Crafts Acylation of Furan

• Blocking groups at the α positions and high temperatures required to give β acylation

Vilsmeier Formylation of Furan

Thiophenes – Electrophilic Substitution

Nitration of Thiophenes

Reagent AcONO₂ generated in situ from c-HNO₃ and Ac₂O

Halogenation of Thiophenes

- Occurs readily at room temperature and even at -30 °C
- Careful control or reaction conditions is required to ensure mono-bromination

Pyrroles – Electrophilic Substitution

• Mild conditions are required (c-HNO₃ and c-H₂SO₄ gives decomposition)

Vilsmeier Formylation of Pyrroles

Pyrroles – Porphyrin Formation

• The extended aromatic 18 π -electron system is more stable than that having four isolated aromatic pyrroles

Furans, Pyrroles Thiophenes – Deprotonation

Metallation

Deprotonation of Pyrroles

- Free pyrroles can undergo *N* or *C* deprotonation
- Large cations and polar solvents favour N substitution
- A temporary blocking group on N can be used to obtain the C-substituted compound

Furans, Pyrroles Thiophenes – Directed Metallation

Control of Regioselectivity in Deprotonation

Common directing groups: CO₂H(Li), CH₂OMe, CONR₂, CH(OR)₂

Synthesis of α , α '-Disubstituted Systems

Use of a Trialkylsilyl Blocking Group

Furans – Synthesis of a Drug

Preparation of Ranitidine (Zantac®) Using a Mannich Reaction

- Furfural is produced very cheaply from waste vegetable matter and can be reduced to give the commercially available compound furfuryl alcohol
- The second chain is introduced using a Mannich reaction which allows selective substitution at the 5-position
- The final step involves conjugate addition of the amine to the α , β -unsaturated nitro compound and then elimination of methane thiol

