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Heterocyclic Compounds                                                                                                       22 Lectures
Classification and nomenclature, Structure, aromaticity in 5-numbered and 6-membered rings
containing one heteroatom; Synthesis, reactions and mechanism of substitution reactions of:
Furan, Pyrrole (Paal-Knorr synthesis, Knorr pyrrole synthesis, Hantzsch synthesis), Thiophene,
Pyridine (Hantzsch synthesis), Pyrimidine, Structure elucidation of indole, Fischer indole synthesis
and Madelung synthesis), Structure elucidation of quinoline and isoquinoline, Skraup synthesis,
Friedlander’s synthesis, Knorr quinoline synthesis, Doebner- Miller synthesis, Bischler-Napieralski
reaction, Pictet-Spengler reaction, Pomeranz-Fritsch reaction
Derivatives of furan: Furfural and furoic acid.

Coverage:
1. Furan, Pyrrole and Thiophene : Electrophilic Substitution Reactions

2. Metallation Reaction / Deprotonation Reaction
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Furans, Pyrroles and Thiophenes – Electrophilic Substitution

Electrophilic Substitution – Regioselectivity
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• Pyrrole > furan > thiophene > benzene

• Thiophene is the most aromatic in character and undergoes the slowest reaction

• Pyrrole and furan react under very mild conditions

• -Substitution favoured over -substitution more resonance forms for intermediate and  
so the charge is less localised (also applies to the transition state)

• Some -substitution usually observed – depends on X and substituents
NO2
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Furans – Electrophilic Substitution
Nitration of Furans
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• Nitration can occur by an addition-elimination process

• When NO2BF4 is used as a nitrating agent, the reaction follows usual mechanism

Bromination of Furans

• Furan reacts vigorously with Br2 or Cl2 at room temp. to give polyhalogenatedproducts

• It is possible to obtain 2-bromofuran by careful control of temperature
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Furans – Electrophilic Substitution
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Mannich Reaction of Furans
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• Blocking groups at the  positions and high temperatures required to give  acylation

Vilsmeier Formylation of Furan
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Thiophenes – Electrophilic Substitution

NO2S S S

Nitration of Thiophenes

NO2
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Halogenation of Thiophenes

• Reagent AcONO2 generated in situ from c-HNO3 andAc2O

• Occurs readily at room temperature and even at 30 °C

• Careful control or reaction conditions is required to ensure mono-bromination

Br
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48% HBr,

10  10 °C

48% HBr,
25  5 °C
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Pyrroles – Electrophilic Substitution

Nitration of Pyrroles
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• Mild conditions are required (c-HNO3 and c-H2SO4 givesdecomposition)

Vilsmeier Formylation of Pyrroles
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Pyrroles – Porphyrin Formation

isolated aromatic pyrroles

no extended aromaticity 18 -electron system

• The extended aromatic 18 -electron system is more stable than that having four
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Furans, Pyrroles Thiophenes – Deprotonation

Metallation
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• Free pyrroles can undergo N or C deprotonation

• Large cations and polar solvents favour N substitution

• A temporary blocking group on N can be used to obtain the C-substituted compound
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Furans, Pyrroles Thiophenes – Directed Metallation

n-BuLi
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Common directing groups: CO2H(Li), CH2OMe, CONR2, CH(OR)2

Control of Regioselectivity in Deprotonation

Synthesis of ,’-Disubstituted Systems
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Furans – Synthesis of a Drug

Preparation of Ranitidine (Zantac®) Using a Mannich Reaction
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compound and then elimination of methane thiol

• Furfural is produced very cheaply from waste vegetable matter and can be reduced to  

give the commercially available compound furfuryl alcohol

• The second chain is introduced using a Mannich reaction which allows selective  

substitution at the 5-position

• The final step involves conjugate addition of the amine to the ,-unsaturated nitro
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