B.Sc. Semester-IV Core Course-VIII (CC-VIII) Inorganic Chemistry-III

II. Transition Elements 2. Variable Oxidation States of Transition Elements-I

Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi

Transition Elements:

12 Lectures

General group trends with special reference to electronic configuration, colour, variable valency, magnetic and catalytic properties, ability to form complexes. Stability of various oxidation states and e.m.f. (Latimer & Bsworth diagrams). Difference between the first, second and third transition series.

Chemistry of Ti, V, Cr Mn, Fe and Co in various oxidation states (excluding their metallurgy)

Coverage: 2. Variable Oxidation States of Transition Elements-I

Oxidation States of Transition Elements

Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn
							+1	+1	
	+2	+2	+2	+2	+2	+2	+2	+2	+2
+3	+3	+3	+3	+3	+3	+3	+3	+3	
	+4	+4	+4	+4	+4		+4		
		+5	+5	+5	+5				
			+6	+6	+6				
				+7					

Oxidation States and Species for Vanadium in Aqueous Solution

Oxidation State of Vanadium	Species in Aqueous Solution
+5	VO_2^+ (yellow)
+4	VO^{2+} (blue)
+3	$V^{3+}(aq)$ (blue-green)
+2	$V^{2+}(aq)$ (violet)

Typical Chromium Compounds

Oxidation State of Chromium	Examples of Compounds (X = halogen)
+2	CrX ₂
+3	CrX ₃
+6	Cr_2O_3 (green) $Cr(OH)_3$ (blue-green) $K_2Cr_2O_7$ (orange) Na_2CrO_4 (yellow) CrO_3 (red)

Some Compounds of Manganese in Its Most Common Oxidation States

Oxidation State of Manganese	Examples of Compounds
+2	Mn(OH) ₂ (pink)
	MnS (salmon)
	MnSO ₄ (reddish)
	$MnCl_2$ (pink)
+4	MnO ₂ (dark brown)
+7	KMnO ₄ (purple)

Typical Compounds of Iron

Oxidation	Evamples of
Iron	Compounds
+2	FeO (black)
	FeS (brownish
	black)
	$FeSO_4 \cdot 7H_2O$
	(green)
	$K_4 Fe(CN)_6$
	(yellow)
+3	FeCl ₃ (brownish
	black)
	Fe_2O_3 (reddish
	brown)
	$K_3Fe(CN)_6$ (red)
	$Fe(SCN)_3$ (red)
+2, +3	Fe_3O_4 (black)
(mixture)	$KFe[Fe(CN)_6]$
	(deep blue,
	"Prussian blue")

Dr. Rajeev Ranjan

Typical Compounds of Cobalt

Oxidation State	Examples of Compounds
+2	CoSO ₄ (dark blue)
	$[Co(H_2O)_6]Cl_2$
	(pink)
	$[Co(H_2O)_6](NO_3)_2$
	(red)
	CoS (black)
	CoO (greenish
	brown)
+3	CoF_3 (brown)
	Co_2O_3 (charcoal)
	$K_3[Co(CN)_6]$
	(yellow)
	$[Co(NH_3)_6]Cl_3$
	(yellow)

Typical Compounds of Nickel

Oxidation State of Nickel	Examples of Compounds
+2	NiCl ₂ (yellow) $[Ni(H_2O)_6]Cl_2$ (green) NiO (greenish black) NiS (black) $[Ni(H_2O)_6]SO_4$ (green) $[Ni(NH_3)_6](NO_3)_2$ (blue)

Typical Compounds of Copper

Oxidation State of Copper	Examples of Compounds
+1	Cu ₂ O (red)
	Cu ₂ S (black)
	CuCl (white)
+2	CuO (black)
	$CuSO_4 \cdot 5H_2O$ (blue)
	$CuCl_2 \cdot 2H_2O$ (green)
	$[Cu(H_2O)_6](NO_3)_2$
	(blue)

Thank You

Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi