B.Sc. Semester-IV Core Course-VIII (CC-VIII) Inorganic Chemistry-III

II. Transition Elements

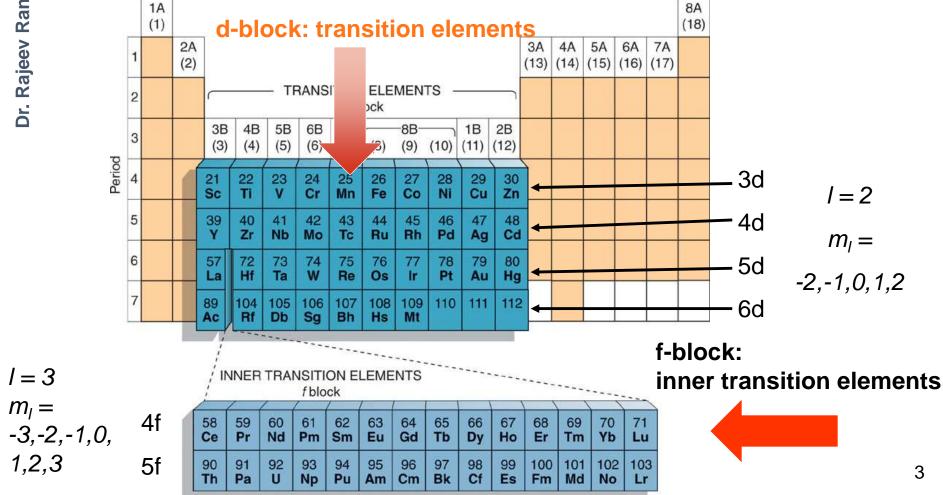
1. Transition Elements - Electronic Configurations

Dr. Rajeev Ranjan
University Department of Chemistry
Dr. Shyama Prasad Mukherjee University, Ranchi

Transition Elements:

12 Lectures

General group trends with special reference to electronic configuration, colour, variable valency, magnetic and catalytic properties, ability to form complexes. Stability of various oxidation states and e.m.f. (Latimer & Bsworth diagrams). Difference between the first, second and third transition series.


Chemistry of Ti, V, Cr Mn, Fe and Co in various oxidation states (excluding their metallurgy)

Coverage:

1. Transition Elements-Electronic Configurations

What is a transition element?

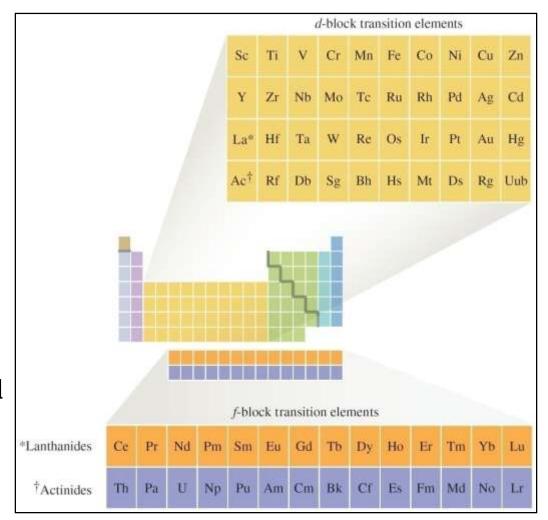
"an element with valance d- or f-electrons" ie. a d-block or f-block metal

Transition Elements

• Show great similarities within a given period as well as within a given vertical group.

Forming Ionic Compounds

- Transition elements generally exhibit more than one oxidation state.
- Cations are often


 complex ions species

 where the transition

 metal ion is surrounded

 by a certain number of

 ligands (Lewis bases).

Electronic Configurations

- **Example**
 - V: $[Ar]4s^23d^3$
 - Fe: $[Ar]4s^23d^6$
- **Exceptions: Cr and Cu**
 - Cr: $[Ar]4s^13d^5$
 - Cu: $[Ar]4s^13d^{10}$
- First-row transition metal ions do not have 4s electrons.
 - Energy of the 3d orbitals is less than that of the 4s orbital.

Ti: $[Ar]4s^23d^2$

 Ti^{3+} : [Ar] $3d^1$

Concept Check:

Qu. What is the expected electron configuration of Sc⁺? Explain.

Ans. $[Ar]3d^2$

3d-Transition Elements

- Scandium chemistry strongly resembles lanthanides
- Titanium excellent structural material (light weight)
- Vanadium mostly in alloys with other metals
- Chromium important industrial material
- Manganese production of hard steel
- Iron most abundant heavy metal
- Cobalt alloys with other metals
- Nickel plating more active metals; alloys
- Copper plumbing and electrical applications
- Zinc galvanizing steel

Electronic configurations of the first series of the *d*-block elements

Element	Atomic number	Electronic configuration	
Scandium	21	[Ar] 3d ¹ 4s ²	
Titanium	22	[Ar] 3d ² 4s ²	
Vanadium	23	[Ar] 3d ³ 4s ²	
Chromium	24	[Ar] 3d ⁵ 4s ¹	
Manganese	25	[Ar] 3d ⁵ 4s ²	
Iron	26	[Ar] 3d ⁶ 4s ²	
Cobalt	27	[Ar] $3d^{7}4s^{2}$	
Nickel	28	[Ar] 3d ⁸ 4s ²	
Copper	29	[Ar] 3d ¹⁰ 4s ¹	
Zinc	30	[Ar] 3d ¹⁰ 4s ²	

The 3dⁿ electron configurations of M(II) and M(III) cations of the atoms of transition elements

Element	Neutral atom	M^{2+} Ion	M ³⁺ Ion
Sc	$[Ar]4s^23d^1$	[Ar]3d ¹	[Ar]
Ti	$[Ar]4s^23d^2$	$[Ar]3d^2$	[Ar]3d ¹
V	$[Ar]4s^23d^3$	$[Ar]3d^3$	$[Ar]3d^2$
Cr	$[Ar]4s^{1}3d^{5}$	$[Ar]3d^4$	$[Ar]3d^3$
Mn	$[Ar]4s^23d^5$	[Ar]3d ⁵	[Ar]3d ⁴
Fe	$[Ar]4s^23d^6$	$[Ar]3d^6$	$[Ar]3d^5$
Co	$[Ar]4s^23d^7$	$[Ar]3d^7$	$[Ar]3d^6$
Ni	$[Ar]4s^23d^8$	[Ar]3d ⁸	$[Ar]3d^7$
Cu	$[Ar]4s^{1}3d^{10}$	[Ar]3d ⁹	[Ar]3d ⁸
Zn	$[Ar]4s^23d^{10}$	[Ar]3d ¹⁰	[Ar]3d ⁹

d-Block Elements as Metals

Physical properties of *d*-Block elements :

- good conductors of heat and electricity
- hard and strong
- → malleable and ductile
- → lustrous
- high melting points and boiling points
- Exceptions : Mercury
 - → low melting point
 - → <u>liquid</u> at room temperature and pressure
 - extremely useful as <u>construction</u> <u>materials</u>
 - ∴ strong and unreactive
 - used for <u>construction</u> and making <u>machinery nowadays (Fe)</u>
 - abundant
 - easy to extract

d-Block Elements as Metals

- Iron
 - corrodes easily
 - → often combined with other elements to form steel
 - :. harder and more resistant to corrosion

Transition Metals

- Transition metals are found in nature
 - Rocks and minerals contain transition metals
 - The color of many gemstones is due to the presence of transition metal ions
 - Rubies are red due to Cr
 - Sapphires are blue due to presence of Fe and Ti
 - Many biomolecules contain transition metals that are involved in the functions of these biomolecules
 - Vitamin B12 contains Co
 - Hemoglobin, myoglobin, and cytochrome C contain Fe

Transition Metals

- Transition metals and their compounds have many useful applications
 - Fe is used to make steel and stainless steel
 - Ti is used to make lightweight alloys
 - Transition metal compounds are used as pigments
 - TiO_2 = white
 - $PbCrO_{4} = yellow$
 - $Fe_4[Fe(CN)_6]_3$ (prussian blue)= blue
 - Transition metal compounds are used in many industrial processes

12

Transition Metals

- General Properties
 - Have typical metallic properties
 - Not as reactive as Grp. IA, IIA metals
 - Have high MP's, high BP's, high density, and are hard and strong
 - Have 1 or 2 s electrons in valence shell
 - Differ in d electrons in n-1 energy level
 - Exhibit multiple oxidation states

Thank You

Dr. Rajeev Ranjan
University Department of Chemistry
Dr. Shyama Prasad Mukherjee University, Ranchi