B.Sc. Semester-IV
 Core Course-VIII (CC-VIII) Inorganic Chemistry

I. Coordination Chemistry 9. The Angular Overlap Method

Dr. Rajeev Ranjan
University Department of Chemistry
Dr. Shyama Prasad Mukherjee University, Ranchi

I. Coordination Chemistry: 20 Lectures

Werner's theory, valence bond theory (inner and outer orbital complexes), electroneutrality principle and back bonding. Crystal field theory, measurement of $10 \mathrm{Dq}(\Delta \mathrm{o})$, CFSE in weak and strong fields, pairing energies, factors affecting the magnitude of $10 \mathrm{Dq}(\Delta \mathrm{o}, \Delta \mathrm{t})$. Octahedral vs. tetrahedral coordination, tetragonal distortions from octahedral geometry Jahn-Teller theorem, square planar geometry. Qualitative aspect of Ligand field and MO Theory.

IUPAC nomenclature of coordination compounds, isomerism in coordination compounds. Stereochemistry of complexes with 4 and 6 coordination numbers. Chelate effect, polynuclear complexes, Labile and inert complexes.

Coverage:

1. The Angular Overlap Method

Angular Overlap Method

An attempt to systematize the interactions for all geometries.

The various complexes may be fashioned out of the ligands above

Linear: 1,6
Trigonal: 2,11,12
T-shape: 1,3,5

Tetrahedral: 7,8,9,10
Square planar: 2,3,4,5
Trigonal bipyramid: 1,2,6,11,12

Angular Overlap Method

All σ interactions with the ligands are stabilizing to the ligands and destabilizing to the d orbitals. The interaction of a ligand with a d orbital depends on their orientation with respect to each other, estimated by their overlap which can be calculated.

The total destabilization of a d orbital comes from all the interactions with the set of ligands.

For any particular complex geometry we can obtain the overlaps of a particular d orbital with all the various ligands and thus the destabilization.

ligand	$d_{z 2}$	$d_{x 2-y 2}$	$d_{x y}$	$d_{x z}$	$d_{y z}$
1	$1 e_{\sigma}$	0	0	0	0
2	$1 / 4$	$3 / 4$	0	0	0
3	$1 / 4$	$3 / 4$	0	0	0
4	$1 / 4$	$3 / 4$	0	0	0
5	$1 / 4$	$3 / 4$	0	0	0
6	1	0	0	0	0
7	0	0	$1 / 3$	$1 / 3$	$1 / 3$
8	0	0	$1 / 3$	$1 / 3$	$1 / 3$
9	0	0	$1 / 3$	$1 / 3$	$1 / 3$
10	0	0	$1 / 3$	$1 / 3$	$1 / 3$
11	$1 / 4$	$3 / 16$	$9 / 16$	0	0
12	$1 / 4$	$3 / 16$	$9 / 16$	0	0

Thus, for example a $d_{x 2-y 2}$ orbital is destabilized by $(3 / 4+6 / 16) e_{\sigma}=$ $18 / 16 \mathrm{e}_{\sigma}$ in a trigonal bipyramid complex due to σ interaction. The $d_{x y}$, equivalent by symmetry, is destabilized by the same amount. The d_{22} is destabililzed by $11 / 4 \mathbf{e}_{\sigma}$.

Thank You

Dr. Rajeev Ranjan
University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi

