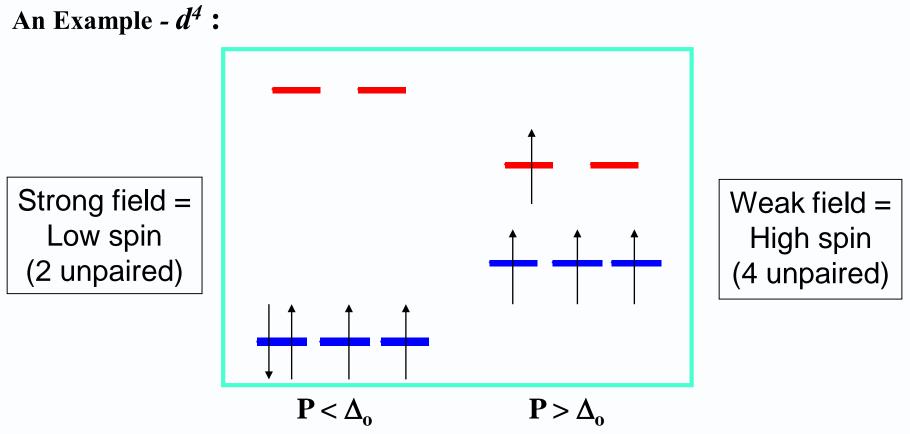
B.Sc. Semester-IV Core Course-VIII (CC-VIII) Inorganic Chemistry



## I. Coordination Chemistry 6. Magnetic Properties of 3d-Compounds



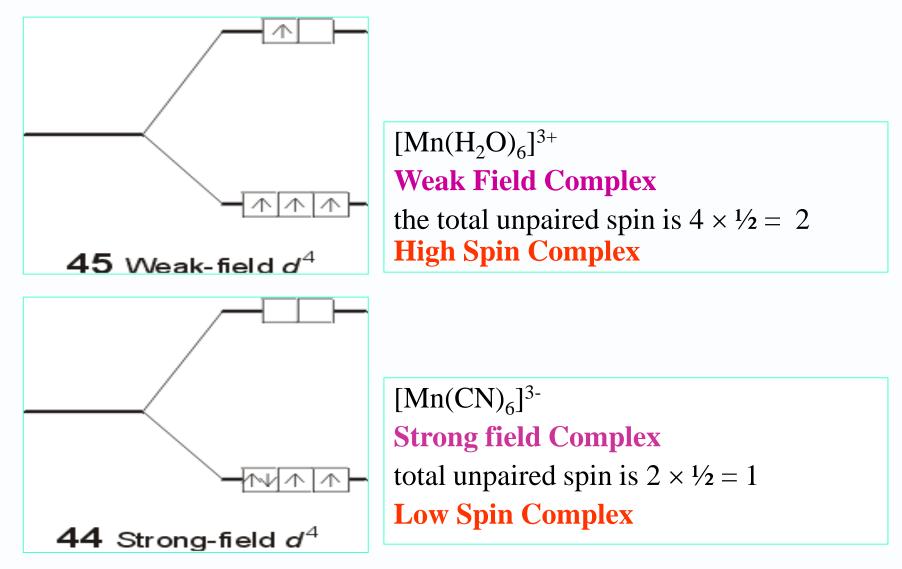
Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi


#### **Coordination Chemistry: 20 Lectures**

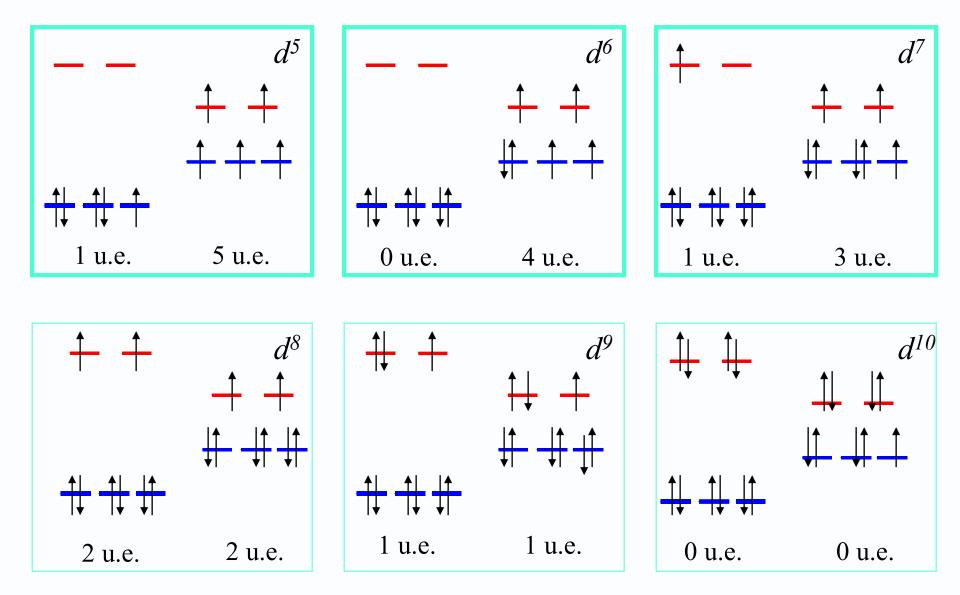
Werner's theory, valence bond theory (inner and outer orbital complexes), electroneutrality principle and back bonding. Crystal field theory, measurement of 10 Dq ( $\Delta$ o), CFSE in weak and strong fields, pairing energies, factors affecting the magnitude of 10 Dq ( $\Delta$ o,  $\Delta$ t). Octahedral vs. tetrahedral coordination, tetragonal distortions from octahedral geometry Jahn-Teller theorem, square planar geometry. Qualitative aspect of Ligand field and MO Theory.

IUPAC nomenclature of coordination compounds, isomerism in coordination compounds. Stereochemistry of complexes with 4 and 6 coordination numbers. Chelate effect, polynuclear complexes, Labile and inert complexes.

Coverage: 1. Magnetic Properties of 3*d*-Compounds


#### **Ground-state Electronic Configuration and** Magnetic Properties of 3*d*-Compounds




Coulombic repulsion energy and exchange energy

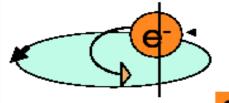
When the 4<sup>th</sup> electron is assigned it will either go into the higher energy  $e_{\alpha}$  orbital at an energy cost of  $D_{\alpha}$  or be paired at an energy cost of P, the pairing energy.

#### Ground-state Electronic Configuration and Magnetic Properties



#### **Placing Electrons in** *d***-Orbitals**




Dr. Rajeev Ranjan

### Magnetic Properties of 3*d*-Compounds

Each electron has a magnetic moment owing to its:

spin angular momentum

orbital angular momentum

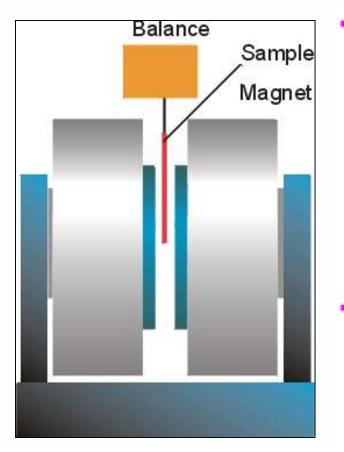


Orbital motion of e generates current and magnetic field

Spin motion of e about its own Axis also generates a magnetic field

- The magnetic moment  $\mu$  of a complex with total spin quantum number S is:
- $\mu = 2\{S(S+1)\}^{1/2} \mu_B$  ( $\mu_B$  is the Bohr magneton)
- $\mu_B = eh/4\pi m_e = 9.274 \times 10^{-24} J T^{-1}$
- Since each unpaired electron has a spin 1/2,
- $S = (\frac{1}{2})n$ , where n = no. of unpaired electrons
- $\mu = \{n(n+2)\}^{1/2} \mu_B$
- In d<sup>4</sup>, d<sup>5</sup>, d<sup>6</sup>, and d<sup>7</sup> octahedral complexes, magnetic measurements can very easily predict weak versus strong field.
- Tetrahedral complexes only high spin complexes result, for  $\Delta_t \ll \Delta_0$ .

Dr. Rajeev Ranjan


#### Magnetic Properties of 3*d*-Compounds

#### n = no. of unpaired electrons $\mu = \{n(n+2)\}^{1/2} \mu_B$

| Ion               | n | S   | μ/μ <sub>B</sub> | Experimental |
|-------------------|---|-----|------------------|--------------|
|                   |   |     | Calculate        |              |
|                   |   |     | d                |              |
| Ti <sup>3+</sup>  | 1 | 1/2 | 1.73             | 1.7 - 1.8    |
| $\mathbf{V}^{3+}$ | 2 | 1   | 2.83             | 2.7 - 2.9    |
| Cr <sup>3+</sup>  | 3 | 3/2 | 3.87             | 3.8          |
| $Mn^{3+}$         | 4 | 2   | 4.90             | 4.8-4.9      |
| Fe <sup>3+</sup>  | 5 | 5/2 | 5.92             | 5.3          |

#### **Similar Calculation can be done for Low-spin Complex**

#### Magnetic Properties of 3d-Compounds



Gouy balance to measure the magnetic susceptibilities

- We can measure the magnetic properties of a sample by hanging a vial of material from a balance so that it sits partly in a magnetic field
  - The sample will be pulled down into the magnet if it contains unpaired electrons (said to be paramagnetic)
  - It will tend to be pushed out of the field if it contains no unpaired electrons (diamagnetic)
- The amount of material in the vial along with the extent to which the sample is pulled into the magnet allows us to calculate the magnetic susceptibility of the sample
  - Sample with a high magnetic susceptibility is strongly pulled into the magnetic field

# **Thank You**



Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi