B.Sc. Semester-IV Core Course-VIII (CC-VIII) Inorganic Chemistry

I. Coordination Chemistry 3. Crystal Field Theory

(A. Energy of 3*d*-orbitals in Octahedral Field)

Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi

Coordination Chemistry: 20 Lectures

Werner's theory, valence bond theory (inner and outer orbital complexes), electroneutrality principle and back bonding. Crystal field theory, measurement of 10 Dq (Δ o), CFSE in weak and strong fields, pairing energies, factors affecting the magnitude of 10 Dq (Δ o, Δ t). Octahedral vs. tetrahedral coordination, tetragonal distortions from octahedral geometry Jahn-Teller theorem, square planar geometry. Qualitative aspect of Ligand field and MO Theory.

IUPAC nomenclature of coordination compounds, isomerism in coordination compounds. Stereochemistry of complexes with 4 and 6 coordination numbers. Chelate effect, polynuclear complexes, Labile and inert complexes.

Coverage:

- **1. Crystal Field Theory**
- 2. Arrangements of *d*-orbitals in Octahedral Field
- 3. Splitting of Energy Levels of *d*-orbitals in Octahedral Field

Crystal Field Theory

<u>Crystal field theory</u> considers the effect of different ligand environments (ligand fields) on the energies of the *d*-orbitals.

The energies of the *d*- orbitals in different environments determines the <u>magnetic</u> and <u>electronic spectral</u> properties of transition metal complexes.

<u>Crystal field theory</u> assumes an electrostatic model of metal-ligand interactions.

Relative Energies of metal-ion 3d electrons

• Because the $4s^2$ electrons are lost before the 3d, the highest occupied molecular orbitals (HOMOs) in transition metal complexes will contain the 3d electrons.

 M^{2+} $3d^1$ $3d^2$ $3d^3$ $3d^4$ $3d^5$ $3d^6$ $3d^7$ $3d^8$ $3d^9$ $3d^{10}$ Ti V Cr Mn Sc Со Ni Fe Cu Zn

- The distribution of the 3*d* electrons between the *d*-orbitals in any given complex will determine the magnetic properties of the complex (the number of unpaired electrons, the total spin (S) and the <u>magnetic moment</u> of the complex).
- Electronic transitions between the highest occupied *d*-orbitals will be responsible for the energies (λ_{max}) and intensities (ϵ) of the *d*-*d* bands in the <u>electronic spectra</u> of metal complexes.

Crystal Field Theory

Crystal Field Model

- A purely *ionic* model for transition metal complexes.
- Ligands are considered as point charge.
- Predicts the pattern of splitting of d-orbitals.
- Used to rationalize spectroscopic and magnetic properties.

d-orbitals: look attentively along the axis

Octahedral Field

- We assume an octahedral array of negative charges placed around the metal ion (which is positive).
- The ligand and orbitals lie on the same axes as negative charges.
 - Therefore, there is a large, unfavorable interaction between ligand (-) and these orbitals.
 - These orbitals form the degenerate high energy pair of energy levels.
- The d_{xy} , d_{yz} , and d_{xz} orbitals bisect the negative charges.
 - Therefore, there is a smaller repulsion between ligand and metal for these orbitals.
 - These orbitals form the degenerate low energy set of energy levels.

Arrangements of *d*-Orbitals in Octahedral Field

Arrangements of *d*-Orbitals in Octahedral Field

Splitting of Energy Levels of *d*-Orbitals in Octahedral Field

Energy of 3d orbitals in Octahedral field

Thank You

Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi