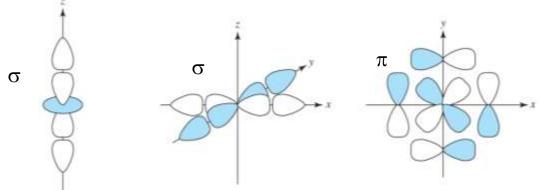
B.Sc. Semester-IV Core Course-VIII (CC-VIII) Inorganic Chemistry

I. Coordination Chemistry 18. Qualitative Aspects of Ligand Field and MO Theory

Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi

I. Coordination Chemistry: 20 Lectures


Werner's theory, valence bond theory (inner and outer orbital complexes), electroneutrality principle and back bonding. Crystal field theory, measurement of 10 Dq (Δ o), CFSE in weak and strong fields, pairing energies, factors affecting the magnitude of 10 Dq (Δ o, Δ t). Octahedral vs. tetrahedral coordination, tetragonal distortions from octahedral geometry Jahn-Teller theorem, square planar geometry. Qualitative aspect of Ligand field and MO Theory.

IUPAC nomenclature of coordination compounds, isomerism in coordination compounds. Stereochemistry of complexes with 4 and 6 coordination numbers. Chelate effect, polynuclear complexes, Labile and inert complexes.

Coverage: 1. Qualitative Aspects of Ligand Field and MO Theory

Ligand Field Theory

- I. Octahedral Complexes
 - A. History
 - 1) Crystal Field Theory only includes ionic interactions in the solid state
 - 2) MO Theory developed and applied only to non-metal compounds
 - 3) Ligand Field Theory combines both for transition metal coordination compounds
 - B. MO's for O_h complexes
 - 1) Donor atom = atom in the ligand with a p-orbital or hybrid orbital directly approaching the metal ion to form a σ -bond
 - 2) The d_{xy} , d_{xz} , d_{yz} orbitals are not of correct symmetry to σ -bond with ligands
 - 3) The $d_{x_2-y_2} d_{z_2}$, p_x , p_y , p_z , and s orbitals all have correct symmetry for interaction with ligands

4) Use the Group Theory Approach to find Molecular Orbitals

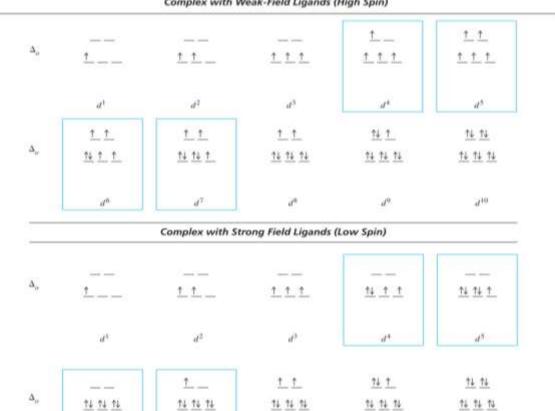
a) The six ligand orbitals generate the group orbitals to combine with metal Atomic Orbitals


 TABLE 10.4
 Character Table for O_h

	E	00	60	60	$2C(-C^{2})$;	66	96	2-	6		
Oh	E	8C₃	6C2	6C ₄	3C ₂ (=C ₄ ²)	i	654	8S ₆	$3\sigma_{h}$	$6\sigma_{\mathbf{d}}$		
A_{1g}	1	1	1	1	1	1	1	1	1	1		
A_{2g}	1	1	-1	-1	1	1	-1	1	1	-1		
E_g	2	-1	0	0	2	2	0	-1	2	0		$(2z^2 - x^2 - y^2, x^2 - y^2)$
T_{1g}	3	0	-1	1	-1	3	1	0	-1	-1	(R_x, R_y, R_z)	
T_{2g}	3	0	1	-1	-1	3	-1	0	-1	1		(xy, xz, yz)
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
A_{2u}	1	1	-1	-1	1	-1	1	-1	-1	1		
Eu	2	-1	0	0	2	-2	0	1	-2	0		
T_{1u}	3	0	-1	1	-1	-3	-1	0	1	1	(x, y, z)	
T _{2u}	3	0	1	-1	-1	-3	1	0	1	-1		

b) The reducible representation: $\Gamma = A_{1g} + T_{1u} + E_{g}$

- c) Nondbonding metal orbitals: d_{xy} , d_{xz} , d_{yz} orbitals have T_{2g} symmetry
- d) Bonding metal orbitals: s orbital has A_{1g} symmetry; p_x , p_y , p_z have T_{1u} symmetry, and d_{x2-y2} , d_{z2} , have E_g symmetry


- e) The 6 metal AO's of proper symmetry combine with the six ligand group orbitals
- f) 6 bonding MO's are filled by ligand electron pairs
- g) The metal t_{2g} Atomic Orbitals are nonbonding (d_{xy}, d_{xz}, d_{yz})
- I. 6 antibonding orbitals are formed with the same symmetries as the bonding orbitals
- II. The 2 e_g^* antibonding orbitals are the lowest energy antibonding orbitals available
- III. The d-electrons from the metal ion will fill in the t_{2g} and e_g^* MO's

- 5) All octahedral metal complexes will have the exact same MO diagram, only the number of d-electrons will change
- 6) The 6 bonding MO's, with lowered energy for their electron pairs is what holds the metal complex together
- 7) The d-electrons in the t_{2g} and e_g^* MO's
 - a) Determine the "Ligand Field"
 - b) Determine the geometry and many characteristics of the metal complex
- C. Orbital Splitting and Electron Spin
 - 1) The energy difference between the t_{2g} and e_g^* MO's = $\Delta_o =$ "delta octahedral"
 - 2) Strong-Field Ligands = ligands whose orbitals interact strongly with metal ion
 - a) e_g^* is raised in energy
 - b) Δ_0 is large
 - 3) Weak-Field Ligands = ligands whose orbitals interact weakly with metal ion
 - a) e_g^* is raised only slightly in energy
 - b) Δ_0 is small

- 4) Electron Spin
 - a) $d^0 d^3$ and $d^8 d^{10}$ octahedral complexes have only one possible arrangement of electrons in the t_{2g} and e_g^* MO's
 - b) $d^4 d^7$ octahedral complexes have two possible electronic arrangements
 - i. Low Spin = least number of unpaired electrons; favored by strong field ligands with large Δ_0
 - ii. High Spin = maximum number of unpaired electrons; favored by weak field ligands with small $\Delta_{complex with Weak-Field Ligands (High Spin)}$

d10

 $d^{\mathbb{R}}$

 d^0

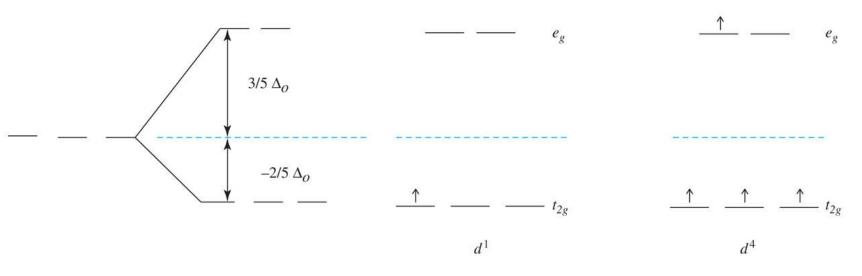
 d^T

dti

Dr. Rajeev Ranjan

5) Explanation for low/high spin complexes

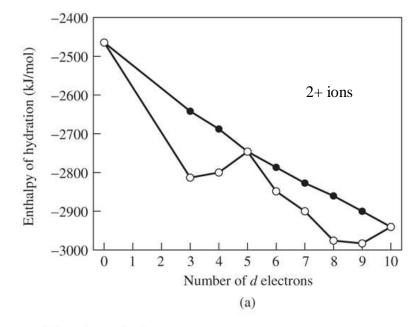
- a) Pairing Energy = Π = energy it costs to pair 2 e- in an orbital
- b) Delta Octahedral = Δ_0 = energy gained by having e- in t_{2g} not e_g^*
- c) Strong-Field ligands have large Δ_0 favors pairing up in t_{2g} MO ($\Delta_0 > \Pi$)
- d) Weak-Field ligands have small Δ_0 favor keeping e- unpaired ($\Delta_0 < \Pi$)

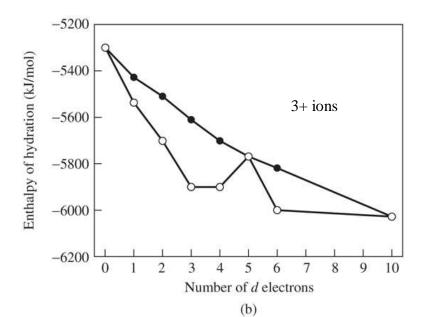

	lon	Δ_o	П	lon	Δ_o	П
d^1				Ti ³⁺	18,800	
d^2				V ³⁺	18,400	
d ³	V ²⁺	12,300		Cr ³⁺	17,400	
d^4	Cr ²⁺	9,250	23,500	Mn ³⁺	15,800	28,000
d^5	Mn ²⁺	7,850 ^b	25,500	Fe ³⁺	14,000	30,000
d^6	Fe ²⁺	9,350	17,600	Co ³⁺	16,750	21,000
d^7	Co ²⁺	8,400	22,500	Ni ³⁺		27,000
d^8	Ni ²⁺	8,600				
d^9	Cu ²⁺	7,850				
d^{10}	Zn ²⁺	0				

6) Aqua complexes

7) Trends in Δ_0

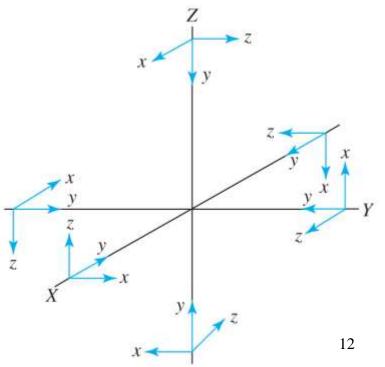
- a) 3^+ ion > 2^+ ion (greater interaction with ligand electrons)
- b) 3^{rd} row metal > 2^{nd} row metal > 1^{st} row metal
 - i. Greater overlap between 4d/5d and ligand orbitals
 - ii. Decrease in Π as volume of the orbitals increases


- D. Ligand Field Stabilization Energy = LFSE
 - 1) LFSE = energetic stabilization of the d-electrons due to orbital splitting (measured in units of Δ_0)
 - 2) Essentially equivalent to CFSE, although the theoretical approach is different
 - 3) Treat electrons in t_{2g} orbitals as stabilized by $-2/5 \Delta_o$ and electrons in e_g^* orbitals as destabilized by $+3/5 \Delta_o$

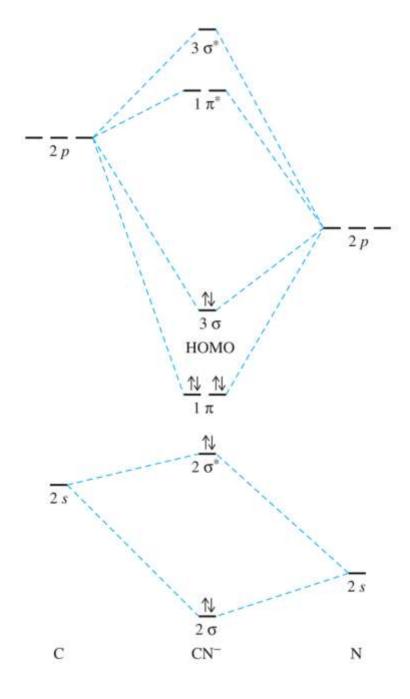

Number of d	We	LFSE				
Electrons	сс: -	t2g		e	(A _o)	
1	î					-25
2	î	î				$-\frac{4}{5}$
3	î	î	î			-65
4	î	î	î	Ŷ		$-\frac{3}{5}$
5	î	î	î	Ŷ	Ť	0
6	î↓	î	î	î	Î	$-\frac{2}{5}$
7	î↓	î↓	î	Ť	î	$-\frac{4}{5}$
8	î↓	î↓	î↓	î	Ť	$-\frac{6}{5}$
9	î↓	î↓	î↓	î↓	î	$-\frac{3}{5}$
10	î↓	î↓	î↓	î↓	î↓	0
Number of d	Stro	LFSE				
Electrons	-	t _{2g}		e	g	(Δ _o)
1	Î					-25
2	Î	î				$-\frac{4}{5}$
3	Î	Ŷ	î			-65
						5
4	î↓	Ŷ	î			-8 -5
4 5	1↓ 1↓	↑ N	↑ ↑			-85
5	î↓	î↓	î	î		$-\frac{8}{5}$ $-\frac{10}{5}$
5	î↓ î↓	1↓ 1↓	↑ î↓	î î	Î	$-\frac{8}{5}$ $-\frac{10}{5}$ $-\frac{12}{5}$
5 6 7	1↓ 1↓ 1↓	1) 1) 1)	↑ 1↓ 1↓		↑ ↑	$-\frac{8}{5}$ $-\frac{10}{5}$ $-\frac{12}{5}$ $-\frac{9}{5}$

Only $d^4 - d^7$ metals have differences between high and low spin

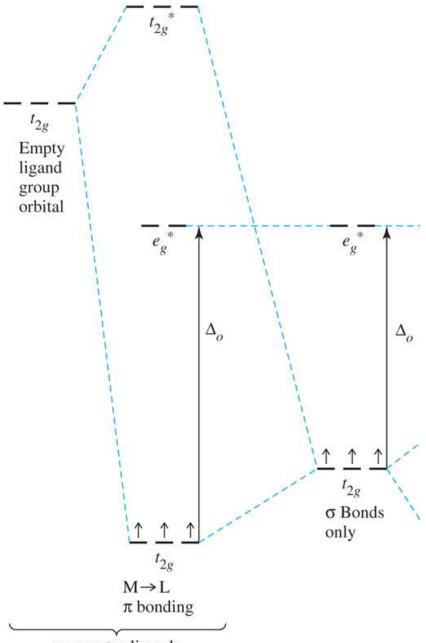
- 4) Importance of LFSE
 - a) Hydration of M²⁺ first row ions
 - i. $M^{2+} + 6 H_2 O \longrightarrow$ $M(H_2 O)_6^{2+}$
 - ii. Enthalpy (-ΔH)becomes morefavorable left to righton period table
 - iii. Predict a smooth change as nuclear charge increases and size decreases
 - iv. The observed pattern has a "double hump" that parallels LFSE



- o Experimental values
- Corrected values

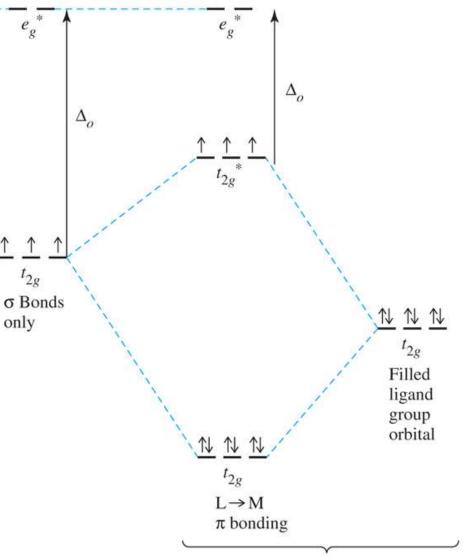

11

- b) Uses of LFSE
 - i. Prediction of high spin or low spin based on ligand type
 - ii. Explanation of electronic spectra (UV-Vis spectra)
 - iii. Explanation of magnetic behavior
- E. π -Bonding
 - 1) Our previous treatment of bonding only looked at σ interactions
 - 2) Other orbitals of the ligand can be involved with π -bonding to the metal
 - a) Other p or hybrid orbitals
 - b) MO's from molecular ligands that have π symmetry
 - 3) Group orbital approach to π-bonding
 a) Choose x,y,z axes so
 that y points directly at metal (σ)
 - b) Find the reducible representation of the 12 p_x and p_z orbitals

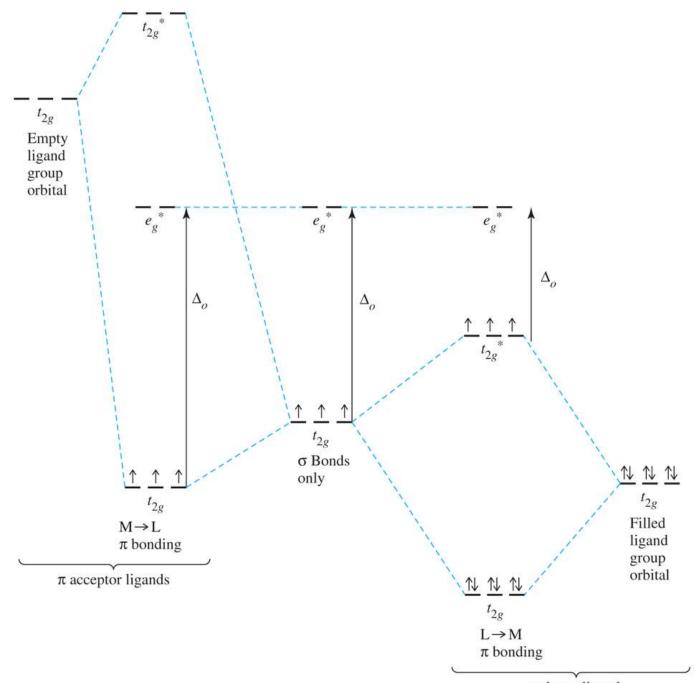


O_h	Ε	8C3	6C2	6C4	3C ₂ (=C ₄ ²)	i	6 <i>S</i> ₄	8 <i>S</i> ₆	$3\sigma_{h}$	$6\sigma_{d}$	
Γ_{π}	12	0	0	0	-4	0	0	0	0	0	
T_{1g}	3	0	-1	1	-1	3	1	0	-1	-1	
T_{2g}	3	0	1	-1	-1	3	-1	0	-1	1	(xy, xz, yz)
T_{1u}	3	0	-1	1	-1	-3	-1	0	1	1	(x, y, z)
T_{2u}	3	0	1	-1	-1	-3	1	0	1	-1	
c)	Γ=	T_{1g} +	- T _{2g} -	+ T _{1u}	+ T _{2u}						
d)	T_{1g} and T_{2u} have no matching metal orbitals to overlap with					Represe metal o					epresentative gand orbital
e)	T_{2g} matches metal d_{xy} , d_{xz} , d_{yz} orbitals for π -bonding					d_{yz})	d_{yz}
f)	T_{1u} matches metal p _x , p _y , p _z orbitals for π-bonding, but are					d_{yz}				\bigcirc	π_z^*
	alrea	ady us poor si	ed in c	5-bond	ing and or ligand	d_{yz}			20		P _z

- 3) CN^{-} Example:
 - a) HOMO = σ -bonding electron pair donor to metal ion
 - b) LUMO = π -bonding electron pair acceptor from metal ion
 - c) The π^* orbitals are higher in energy than the metal t_{2g} orbitals having the correct symmetry to overlap with
 - d) The energy match is good enough for overlap to occur
 - e) π -bonding results



- i. 3 new bonding t_{2g} MO's receive the d-electrons
- ii. 3 new antibonding t_{2g}^* MO's formed
- iii. The e_g^* MO's from the σ -bond MO treatment are nonbonding
- iv. Ligands like this increase Δ_0 by lowering the energy of t_{2g} MO's favoring low spin complexes
- v. CN^{-} is a strong field ligand
- vi. Metal to Ligand $(M \rightarrow L)$ or π -back bonding to π -acceptor ligand
- vii. Transfer of electron density away from M^+ stabilizes the complex over σ -bonding only



 $[\]pi$ acceptor ligands

- 4) F^{-} example
 - a) Filled p-orbitals are the only orbitals capable of π -interactions
 - i) 1 lone pair used in σ -bonding
 - ii) Other lone pairs π -bond
 - b) The filled p-orbitals are lower in energy than the metal t_{2g} set
 - c) Bonding Interaction
 - i. 3 new bonding MO's filled by Fluorine electrons
 - ii. 3 new antibonding MO's form t_{2g}^* set contain d-electrons
 - iii. Δ_o is decreased (weak field)
 - d) Ligand to metal ($L \rightarrow M$) π -bonding
 - i. Weak field, π -donors: F, Cl, H₂O
 - ii. Favors high spin complexes

 π donor ligands

Thank You

Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi