B.Sc.(H) Chemistry Semester - IV Core Course - VIII (CC-VIII) Inorganic Chemistry - III

I. Coordination Chemistry 15. Isomerism in Coordination Compounds-II

Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi

Coordination Chemistry: 20 Lectures

Werner's theory, valence bond theory (inner and outer orbital complexes), electroneutrality principle and back bonding. Crystal field theory, measurement of 10 Dq (Δ o), CFSE in weak and strong fields, pairing energies, factors affecting the magnitude of 10 Dq (Δ o, Δ t). Octahedral vs. tetrahedral coordination, tetragonal distortions from octahedral geometry Jahn-Teller theorem, square planar geometry. Qualitative aspect of Ligand field and MO Theory.

IUPAC nomenclature of coordination compounds, isomerism in coordination compounds. Stereochemistry of complexes with 4 and 6 coordination numbers. Chelate effect, polynuclear complexes, Labile and inert complexes.

Coverage:

- 1. Stereochemistry of Complexes With 4 and 6 Coordination Numbers
 - (A) Geometrical Isomerism in Square Planar Compounds
 - (B) Geometrical Isomerism in Octahedral Compounds
 - (C) Optical Isomerism in Square Planar and Octahedral Compounds

Some Classes of Isomers

Structural Isomerism

- Coordination Isomerism:
 - Composition of the complex ion varies.
 - [Cr(NH₃)₅SO₄]Br and [Cr(NH₃)₅Br]SO₄
- Linkage Isomerism:
 - Composition of the complex ion is the same, but the point of attachment of at least one of the ligands differs.

Linkage Isomerism of NO₂⁻

Stereoisomerism

- Geometrical Isomerism (*cis-trans*):
 - Atoms or groups of atoms can assume different positions around a rigid ring or bond.
 - *Cis* same side (next to each other)
 - **Trans** opposite sides (across from each other)

Geometrical (*cis-trans*) Isomerism for a Square Planar Compound

Geometrical (*cis-trans*) Isomerism for an Octahedral Complex Ion

Stereoisomerism

- Optical Isomerism:
 - Isomers have opposite effects on plane-polarized light.

Unpolarized Light Consists of Waves Vibrating in Many Different Planes

The Rotation of the Plane of Polarized Light by an Optically Active Substance

- Exhibited by molecules that have nonsuperimposable mirror images (chiral molecules).
- Enantiomers isomers of nonsuperimposable mirror images.

Chirality

- Mirror images are nonsuperimposable.
- A molecule can be chiral if it has no rotation-reflection axes (S_n)
- Chiral molecules have no symmetry elements or only have an axes of proper rotation (C_n).
 - **CBrClFI**, Tetrahedral molecule (different ligands)
 - Octahedral molecules with bidentate or higher chelating ligands
 - Octahedral species with [Ma₂b₂c₂], [Mabc₂d₂], [Mabcd₃], [Mabcde₂], or [Mabcdef]

Questions

- Qu. Does [Co(en)₂Cl₂]Cl exhibit geometrical isomerism? Ans. Yes
- Qu. Does it exhibit optical isomerism?
- Ans. Trans form No

Cis form – Yes

THANK YOU