B.Sc. Semester-II Core Course-III (CC-III) Organic Chemistry-I

IV. Aromatic Hydrocarbons O Directing Effects of Mono-Eunctional Group

10. Directing Effects of Mono-Functional Groups

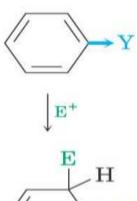
Dr. Rajeev Ranjan
University Department of Chemistry
Dr. Shyama Prasad Mukherjee University, Ranchi

IV Aromatic Hydrocarbons

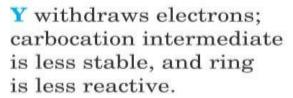
10 Lectures

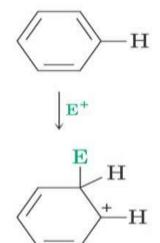
Aromaticity: Hückel's rule, aromatic/anti-aromatic/non-aromatic character of arenes, cyclic carbocations/carbanions and heterocyclic compounds with suitable examples.

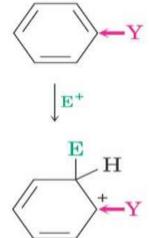
Electrophilic aromatic substitution: Halogenation, Nitration, Sulphonation and Friedel-Craft's alkylation/acylation with their mechanism. Directing effects of mono-functional groups.

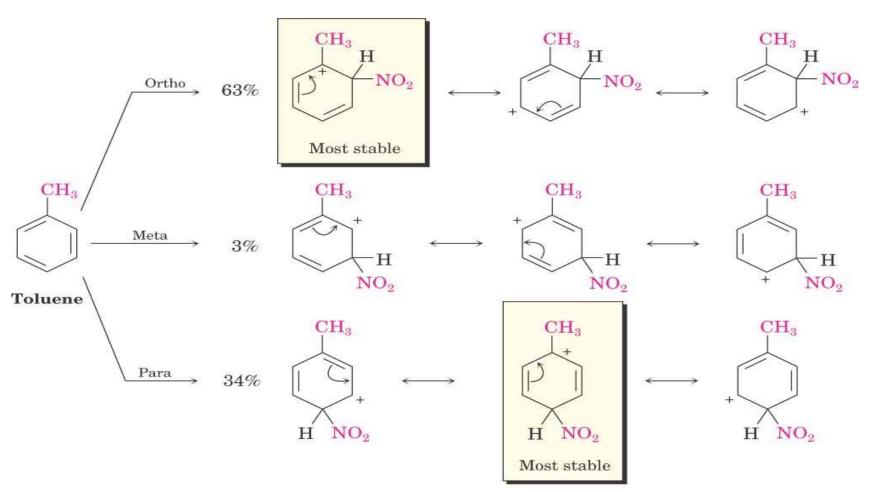

Coverage:


- 1. An Explanation of Substituent Effects
- Ortho- and Para-Directing Activators
- 3. Ortho- and Para-Directing Deactivators
- 4. Meta-Directing Deactivators
- 5. Summary Table: Effect of Substituents in Aromatic Substitution


An Explanation of Substituent Effects


- Activating groups donate electrons to the ring, stabilizing the Wheland intermediate (carbocation).
- Deactivating groups withdraw electrons from the ring, destabilizing the Wheland intermediate.

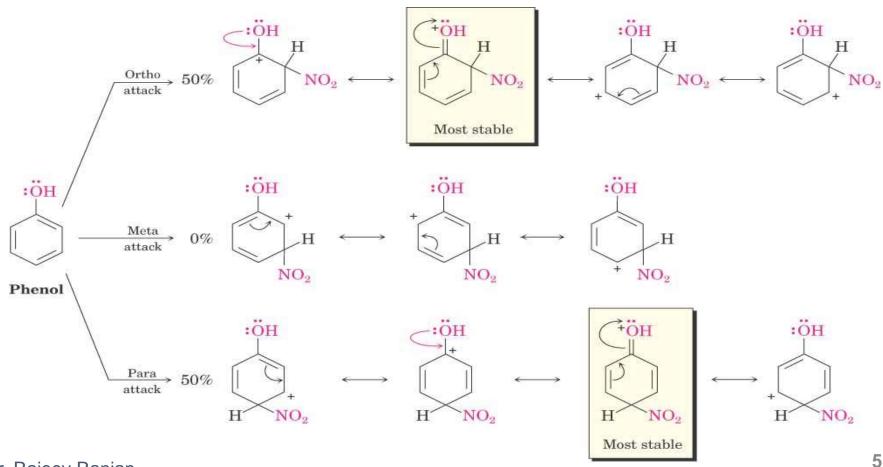

Reactivity →



Y donates electrons; carbocation intermediate is more stable, and ring is more reactive.

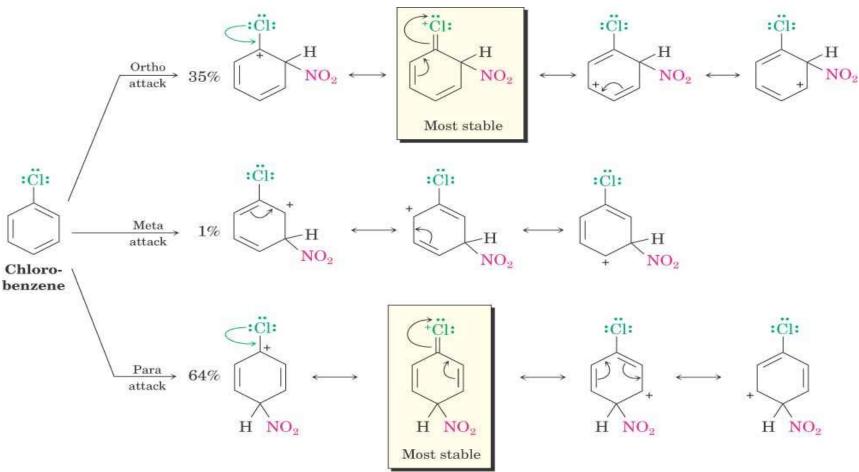
Ortho- and Para-Directing Activators

An Example: -CH3 (or any Alkyl Group)


- Alkyl groups activate: direct further substitution to positions ortho and para to themselves.
- Alkyl group is most effective in the ortho and para positions.

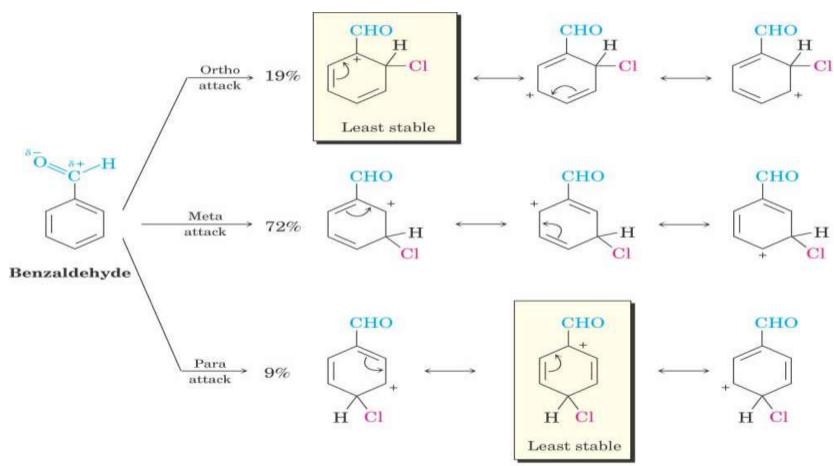
Ortho- and Para-Directing Activators

An Example : -OH Group


- Alkoxyl, and amino groups have a strong, electron-donating resonance effect.
- Most pronounced at the ortho and para positions.

Ortho- and Para-Directing Deactivators

An Example : -Cl Group (Halogens)


- Electron-withdrawing inductive effect outweighs weaker electrondonating resonance effect.
- Resonance effect is only at the ortho and para positions, stabilizing carbocation intermediate.

Meta-Directing Deactivators

An Example: -CHO Group

- Inductive and resonance effects reinforce each other.
- Ortho and para intermediates destabilized by deactivation from carbocation intermediate.
- Resonance cannot produce stabilization.

7

Summary Table: Effect of Substituents in Aromatic Substitution

Substituent	Reactivity	Orientation	Inductive effect	Resonance effect
—СH ₃	Activating	Ortho, para	Weak; electron-donating	None
-ÖH, -NH₂	Activating	Ortho, para	Weak; electron-withdrawing	Strong; electron-donating
$\begin{array}{l} -{{}}{{{{{{{{{}{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{.}}}{{{{{{}{{{{{{{{{{{}$	Deactivating	Ortho, para	Strong; electron-withdrawing	Weak; electron-donating
$-\overset{ dag}{\mathrm{N}}(\mathrm{CH_3})_3$	Deactivating	Meta	Strong; electron-withdrawing	None
$-\mathrm{NO}_2, -\mathrm{CN}, \ -\mathrm{CHO}, -\mathrm{CO}_2\mathrm{CH}_3, \ -\mathrm{COCH}_3, -\mathrm{CO}_2\mathrm{H}$	Deactivating	Meta	Strong; electron-withdrawing	Strong; electron-withdrawing

Dr. Rajeev Ranjan

Thank You

Dr. Rajeev Ranjan
University Department of Chemistry
Dr. Shyama Prasad Mukherjee University, Ranchi