
Data Structure and Algorithms - StackData Structure and Algorithms - Stack

A stack is an Abstract Data Type (ADT), commonly used in most programming languages. It is namedA stack is an Abstract Data Type (ADT), commonly used in most programming languages. It is named
stack as it behaves like a real-world stack, for example – a deck of cards or a pile of plates, etc.stack as it behaves like a real-world stack, for example – a deck of cards or a pile of plates, etc.

A real-world stack allows operations at one end only. For example, we can place or remove a card orA real-world stack allows operations at one end only. For example, we can place or remove a card or
plate from the top of the stack only. Likewise, Stack ADT allows all data operations at one end only. Atplate from the top of the stack only. Likewise, Stack ADT allows all data operations at one end only. At
any given time, we can only access the top element of a stack.any given time, we can only access the top element of a stack.

This feature makes it LIFO data structure. LIFO stands for Last-in-first-out. Here, the element which isThis feature makes it LIFO data structure. LIFO stands for Last-in-first-out. Here, the element which is
placed (inserted or added) last, is accessed first. In stack terminology, insertion operation is calledplaced (inserted or added) last, is accessed first. In stack terminology, insertion operation is called
PUSHPUSH operation and removal operation is called operation and removal operation is called POPPOP operation. operation.

Stack RepresentationStack Representation

The following diagram depicts a stack and its operations −The following diagram depicts a stack and its operations −

A stack can be implemented by means of Array, Structure, Pointer, and Linked List. Stack can eitherA stack can be implemented by means of Array, Structure, Pointer, and Linked List. Stack can either
be a fixed size one or it may have a sense of dynamic resizing. Here, we are going to implement stackbe a fixed size one or it may have a sense of dynamic resizing. Here, we are going to implement stack
using arrays, which makes it a fixed size stack implementation.using arrays, which makes it a fixed size stack implementation.

Basic OperationsBasic Operations

Stack operations may involve initializing the stack, using it and then de-initializing it. Apart from theseStack operations may involve initializing the stack, using it and then de-initializing it. Apart from these
basic stuffs, a stack is used for the following two primary operations −basic stuffs, a stack is used for the following two primary operations −

push()push() − Pushing (storing) an element on the stack. − Pushing (storing) an element on the stack.

pop()pop() − Removing (accessing) an element from the stack. − Removing (accessing) an element from the stack.

When data is PUSHed onto stack.When data is PUSHed onto stack.

To use a stack efficiently, we need to check the status of stack as well. For the same purpose, theTo use a stack efficiently, we need to check the status of stack as well. For the same purpose, the
following functionality is added to stacks −following functionality is added to stacks −

peek()peek() − get the top data element of the stack, without removing it. − get the top data element of the stack, without removing it.

isFull()isFull() − check if stack is full. − check if stack is full.

isEmpty()isEmpty() − check if stack is empty. − check if stack is empty.

At all times, we maintain a pointer to the last PUSHed data on the stack. As this pointer alwaysAt all times, we maintain a pointer to the last PUSHed data on the stack. As this pointer always
represents the top of the stack, hence named represents the top of the stack, hence named toptop. The . The toptop pointer provides top value of the stack pointer provides top value of the stack
without actually removing it.without actually removing it.

First we should learn about procedures to support stack functions −First we should learn about procedures to support stack functions −

peek()peek()

Algorithm of peek() function −Algorithm of peek() function −

begin procedure peekbegin procedure peek
 return stack[top] return stack[top]
end procedureend procedure

Implementation of peek() function in C programming language −Implementation of peek() function in C programming language −

ExampleExample

intint peek peek()() {{
 returnreturn stack stack[[toptop];];
}}

isfull()isfull()

Algorithm of isfull() function −Algorithm of isfull() function −

beginbegin procedure isfull procedure isfull

 ifif top equals to MAXSIZE top equals to MAXSIZE
 returnreturn truetrue
 elseelse
 returnreturn falsefalse
 endif endif

endend procedure procedure

Implementation of isfull() function in C programming language −Implementation of isfull() function in C programming language −

ExampleExample

boolbool isfull isfull()() {{
 ifif((top top ==== MAXSIZE MAXSIZE))
 returnreturn truetrue;;
 elseelse
 returnreturn falsefalse;;
}}

isempty()isempty()

Algorithm of isempty() function −Algorithm of isempty() function −

beginbegin procedure isempty procedure isempty

 ifif top less than top less than 11
 returnreturn truetrue
 elseelse
 returnreturn falsefalse
 endif endif

endend procedure procedure

Implementation of isempty() function in C programming language is slightly different. We initialize topImplementation of isempty() function in C programming language is slightly different. We initialize top
at -1, as the index in array starts from 0. So we check if the top is below zero or -1 to determine if theat -1, as the index in array starts from 0. So we check if the top is below zero or -1 to determine if the
stack is empty. Here's the code −stack is empty. Here's the code −

ExampleExample

boolbool isempty isempty()() {{
 ifif((top top ==== --11))
 returnreturn truetrue;;
 elseelse
 returnreturn falsefalse;;
}}

Push OperationPush Operation

The process of putting a new data element onto stack is known as a Push Operation. Push operationThe process of putting a new data element onto stack is known as a Push Operation. Push operation
involves a series of steps −involves a series of steps −

Step 1Step 1 − Checks if the stack is full. − Checks if the stack is full.

Step 2Step 2 − If the stack is full, produces an error and exit. − If the stack is full, produces an error and exit.

Step 3Step 3 − If the stack is not full, increments − If the stack is not full, increments toptop to point next empty space. to point next empty space.

Step 4Step 4 − Adds data element to the stack location, where top is pointing. − Adds data element to the stack location, where top is pointing.

Step 5Step 5 − Returns success. − Returns success.

If the linked list is used to implement the stack, then in step 3, we need to allocate space dynamically.If the linked list is used to implement the stack, then in step 3, we need to allocate space dynamically.

Algorithm for PUSH OperationAlgorithm for PUSH Operation

A simple algorithm for Push operation can be derived as follows −A simple algorithm for Push operation can be derived as follows −

beginbegin procedure push procedure push:: stack stack,, data data

 ifif stack stack isis full full
 returnreturn nullnull
 endif endif

 top top ←← top top ++ 11
 stack stack[[toptop]] ←← data data

endend procedure procedure

Implementation of this algorithm in C, is very easy. See the following code −Implementation of this algorithm in C, is very easy. See the following code −

ExampleExample

voidvoid push push((intint data data)) {{
 ifif(!(!isFullisFull())()) {{
 top top == top top ++ 11;;
 stack stack[[toptop]] == data data;;
 }} elseelse {{
 printf printf(("Could not insert data, Stack is full.\n""Could not insert data, Stack is full.\n"););
 }}
}}

Pop OperationPop Operation

Accessing the content while removing it from the stack, is known as a Pop Operation. In an arrayAccessing the content while removing it from the stack, is known as a Pop Operation. In an array
implementation of pop() operation, the data element is not actually removed, instead implementation of pop() operation, the data element is not actually removed, instead toptop is is
decremented to a lower position in the stack to point to the next value. But in linked-listdecremented to a lower position in the stack to point to the next value. But in linked-list
implementation, pop() actually removes data element and deallocates memory space.implementation, pop() actually removes data element and deallocates memory space.

A Pop operation may involve the following steps −A Pop operation may involve the following steps −

Step 1Step 1 − Checks if the stack is empty. − Checks if the stack is empty.

Step 2Step 2 − If the stack is empty, produces an error and exit. − If the stack is empty, produces an error and exit.

Step 3Step 3 − If the stack is not empty, accesses the data element at which − If the stack is not empty, accesses the data element at which toptop is pointing. is pointing.

Step 4Step 4 − Decreases the value of top by 1. − Decreases the value of top by 1.

Step 5Step 5 − Returns success. − Returns success.

Algorithm for Pop OperationAlgorithm for Pop Operation

A simple algorithm for Pop operation can be derived as follows −A simple algorithm for Pop operation can be derived as follows −

beginbegin procedure pop procedure pop:: stack stack

 ifif stack stack isis empty empty
 returnreturn nullnull
 endif endif

 data data ←← stack stack[[toptop]]
 top top ←← top top -- 11
 returnreturn data data

endend procedure procedure

Implementation of this algorithm in C, is as follows −Implementation of this algorithm in C, is as follows −

ExampleExample

intint pop pop((intint data data)) {{

 ifif(!(!isemptyisempty())()) {{
 data data == stack stack[[toptop];];
 top top == top top -- 11;;
 returnreturn data data;;
 }} elseelse {{
 printf printf(("Could not retrieve data, Stack is empty.\n""Could not retrieve data, Stack is empty.\n"););
 }}
}}

For a complete stack program in C programming language, please For a complete stack program in C programming language, please click hereclick here ..

https://www.tutorialspoint.com/data_structures_algorithms/stack_program_in_c.htm

